Movie Recommendation Based on HMM and Low-Rank Matrix
Completion

Xu Bowen, Jiang Haoran, Gong Ke, Hu Jintian, Peng Yucen

January 7, 2023

Abstract

In this project, we focus on movie recommendation systems based on artificial intelligence techniques.
We explore two common methods, via Hidden Markov Models (HMM) and via low-rank matrix comple-
tion, implement them and compare their performances.

1 Introduction

Recommendation systems based on artificial intelligence techniques have gain increasing popularity over the
years, since they make people easier to find what they need. Recommendation systems have their applications
in many fields, ranging from music, movies to online shopping and search engines. Researches [1, 2] have
shown that with enough information of users, it is possible for an automatic movie recommendation system
to provide satisfactory recommendations.

In modern recommendation systems, various algorithms in the field of machine learning and deep learning
can be of help in an effort to achieve good performance. For example, [3] proposed the movie recommenda-
tion system MOVREC that uses collaborative filtering [4]. Another system based on inductive learning, a
iterative and inductive machine learning algorithm used for generating classification rules, is discussed in [5].
Moreover, unsupervised methods like clustering [6] play a role in large-scale recommendation systems. Al-
though clustering is somewhat inefficient, it is possible to utilize clustering as the initial step for contracting
the selection of significant neighbors [7] in collaborative filtering.

In this project, we explore two different ways of implementing the movie recommendation system: via
a Hidden Markov Model, and via low-rank matrix completion. The Hidden Markov Model (HMM) [8] is a
statistical Markov model, in which the system is modeled according to a Markov process with unobservable
(hidden) states. Low-rank matrix completion is a well-known optimization problem with plenty of researches
such as [9], [10] and [11]. We implement these algorithms and have them tested on some data set to see their
advantages and drawbacks.

2 Via HMM

2.1 HMM Modeling

The theory of hidden Markov model is the further development of Markov model, and Markov model is the
modeling of Markov process.

As shown in Figure 7?7 | Markov model regards a general stochastic process as a series of transitions
between states. Where, the state at time t is expressed by q¢, and its value is taken to the state set
S = [s1,82...,8n]. The probability of the latter state in the model is determined by its previous state, and
the transformation relationship between the states is mainly represented by “transition probability”.

q: €S = [S1 52 -.-Sn]

Figure 1: Markov model

As shown in Figure 7?7 | the hidden Markov model actually introduces ”observation value” for each state
based on the Markov model. ot is the observation value output by q: for the state at time t. In this
process, the state is usually hidden, that is, it cannot be directly observed through the experimental output.
Therefore, hidden Markov model describes a double random process, that is, hidden Markov chain with a
certain number of states and a set of explicit random functions.

q: €S =515,
0; EV =1[vy v, ...vn]

Figure 2: Hidden Markov model

For each user, assuming that the user can be classified into some hidden clusters, the user’s preference
can be used to predict the cluster to which they belong, and recommendations for users can be obtained
from their possible clusters. In reality, users’ preferences may change, which can be interpreted as a change
in their clusters. A widely used approach is to treat these clusters as hidden states and use Hidden Markov
Model to model the transition between hidden states and the relationship between hidden states and movies.
Let the number of hidden states be k, and the HMM is defined by A = (A,B,n) where A € R**¥ ig
the transition probability matrix represents the transition probability over hidden states, B € R**™ is the
emission probability matrix represents the relationship between hidden states and movies, T € R¥ is the
initial probability vector.

2.2 HMM training

To determine the parameters of A, the Baum-Welch algorithm, which does not rely on hidden state annotation
nor prior probability, is necessarily introduced. Given an user’s preference sequence O = (O = 01,...,01 =
0¢), the algorithm can be described as:

step 1: Initialize

Set 6 = (A, B, 7) with random conditions. Let X; be a discrete hidden random variable with k possible
values.

step 2: Forward procedure

Let o (t) = P(O1 =01y...,0f = 0¢,0¢ = 1] 6).We can calculate o (t) as,

1. ay(1) =mibq(0q)

2. ai(t+1) = bi(0t+1) ZJN:1 o (t)(lji

step 3: Backward procedure
Let Bi(t) =P(O¢r1 = 0¢41y..., 01 = o7 | X¢ =1,0). We can calculate B;(t) as,

L By(T) =1
2. Bi(t) = X%, Byt + 1aijbj(os1)

step 4: Calculate temporary variables

. — —3 _ P(X¢=1,010) _ o (t) B (t)
L i) =PXe =110,0) = 5o — = X5 o ()85 (1)
_ _ _ _ P(X¢=i,X =j,010) _ i (t)ai;Bj(t+1)bj(0e41)
2. E.i)' (t) = P(Xt =1, Xt+1 =) | Y>e) - P(E)Té) - ZE:] 23:1 “kl(t;akwﬁwj(t+r]lbw(0t+])

step 5: Update
1w =vi(1)

DD W 149
205 = T

* _ Z—{:1]ot:Vk'Yi(t]
3. bi (Vk) = —21:1 Y0
step 6: Termination

If 8 = (A,B,7) is converged or the number of iterations is larger than the max iteration set at the
beginning, then stop and return 0. Otherwise, go to step 2.

2.3 HMM predicting

In this section, w e want to calculate the probability of the user giving high marks to a movie m. This can
be interpreted as calculating probability of an observed sequence:

k
P(m) = P(mlSi)P(Silos...t)

i=1

where S is the last state.

3 Via Low-Rank Matrix Completion

3.1 Problem Formulation

Suppose there are m users and n movies. For a video platform or a movie theater, it is possible to collect
users’ feedback on the movies they have seen by sending questionnaires or having other forms of surveys.
Suppose M € R™*™ is the rating matrix, for which the (i,j)-th entry M;; represents the rating of the i-th
user for the j-th movie. Note that there might be many entries missing, because the users only rate the
movies they have watched.

Let Q be the set of pairs (i,j) such that the entry My;j is known. The movie recommendation problem
could be seen as constructing a suitable X € R™*™, in which Xj; = Mjy; for all (i,j) € Q, and that the
matrix X best represents the true preference of users. In reality, the ratings for movies have locality with
respect to both users and movies, i.e. similar movies may get similar ratings from a same group of people,
and similar users may share a common taste on movies. Therefore, it is reasonable to construct X by filling
the unknown entries in a way that minimizes its rank, which leads to the following problem formulation.

Problem 1 (Low-rank matrix completion).

min rank(X)
XERm*n

subject to Xy = My;, V(i,j) € Q.

Unfortunately, Problem 1 is non-convex and NP-Hard. To solve it efficiently, we may turn to the following
convex relaxation.

Problem 2.
min I1X]],,
XERTTLX“

subject to Xy = My, V(i,j) € Q.

Remark 1 (Nuclear norm). The nuclear norm of a matriz X, denoted ||X||,, s defined to be the sum of
singular values of X, i.e.
IXI. = ¥ oi().
i

The nuclear norm minimization problem (Problem 2) is a convex problem. We can solve it by minimizing
its quadratic penalty function

1
RIXIL 45 Y Xy = My)?, &)
(1,j)eQ

where W is the penalty factor or regularization factor.

3.2 Proximal Gradient Method

To describe the Proximal Gradient Method, we first introduce the prozimal operator.

Definition 1 (Proximal operator). For a convex function h, the proximal operator of h is defined as

. 1 2
proxp (x) = arg min (h(u) + 5 lu—x]| > -

The Proximal Gradient Method aims to solve optimization problems of the following form
min P(x) = f(x) + h(x),

where f is differentiable with domf = R™, and h is convex (maybe non-smooth) whose proximal is easy to
compute. The Proximal Gradient Method is an iterative algorithm that performs gradient descent on the
smooth part (f), and uses the proximal operator on the non-smooth part (h). The algorithm framework is
as follows.

Algorithm 1 Proximal Gradient Method
Input: Initial point x°.
k0
while not converge do
X prox, p, (x* — 1 VF (xF))
ke—k+1
end while
return x*

At each step, ty is the step size or the learning rate that could be either set to a constant or obtained
from a line-search algorithm. From another perspective, Algorithm 1 could be seen as a combination of the
gradient and sub-gradient descent methods if we note that

prox,, n (x* =tV (x*)) = x* — t, VF (x*) — tig®, g* € dn (x*).

Let P € R™*™ be a matrix with the (i,j)-th entry defined as

Py = {1, if (i,j) € Q,

0, otherwise.

For a given regularization factor p, the objective function (1) could be seen as f(X) + h(X), where
1
fX) = 5P O (X=M)[, VFX)=PO (X—M)
and

prox,, , (X) = Udiag (max {|d| — tip, 0}) vl

Here X = Udiag(d) V" is the thin SVD of X. In this way, we can derive the iteration formula for minimizing
(1) using the Proximal Gradient Method:

Ye=Xk—t,Po (XK —M),
Xk—H

(2)

= Proxy, n (Yk) .

In combination with the penalty function method, Problem 2 could be solved using the following algorithm.

Algorithm 2 Nuclear Norm Minimization via Penalty Function and Proximal Gradient Method

Input: Initial point X°, ultimate factor p*, initial factor po, vy € (0, 1).
k0
while py > p* do
Minimize the penalty function (1) using Algorithm 1. Let
if e = u* then
return Xk+!
else
i1 & max {p, v}
k—k+1
end if
end while

X**1 be the optimal solution.

4 Numerical Experiment

After the theoretical analysis of the above two models: HMM Algorithm and Low-Rank Matrix Completion,
we will simulate them and test their recommendation accuracy and running time.

First, our dataset comes from a well-known movie recommendation website: Movielens. We downloaded
more than 100k reviews of movies (943 users, 1682 movies) from this website, each rating including: user
number, movie number, and users’ rating of the movie.

We will use cross-validation to calculate the recommendation accuracy of the algorithm, that is, to
randomly select 10 items from each user’s ratings as the test set, and the remaining ratings as the training
set. We first use the training set to train our model, and then use the trained model to recommend movies
to users in the test set, and compare it with the test set to obtain the correct number of recommendations.
To calculate the accuracy of the model recommendation, we use the following standard:

In our standard, we use Recall Rating to represent the accuracy of the recommendation. Its physical
meaning represents the rate of movies the model recommends that should be recommended to users. Its
numerical definition is as follows:

1 Ri
REC:m;ﬁ

Where the variables are defined as below:
e N: Total number of users.
e« M: Number of users without data in the test set.

e Rji: For user 1 with data in test set, the correct number which is recommended.

e T;: Number of true recommendations to user 1.

The result of numerical experiment is as below:

HMM Low-Rank Matrix Completion
Accuracy(Recall Rate) 25% 22%
Running Time 1 hour 40 minutes 41 seconds

where the run time represents the sum of the training time and the prediction time.
From the table above, we can see the conclusion:

o« HMM Algorithm: slightly high accuracy but extremely long running time.

e Low-Rank Matrix Completion: Almost same accuracy as traditional HMM Algorithm but extremely
fast running speed.

To conclude the experimental results, we can see that the new low-rank matrix recovery method is very
close to the traditional HMM method in the recommendation accuracy (recall rate), but for the running
time, the low-rank matrix recovery method is much better than the traditional HMM method. This also
verifies the superiority of the low-rank matrix recovery method and conforms to the improvement of the time
complexity mentioned in Motivation.

5 Conclusion

We replicate a simple HMM based movie recommendation system, and test its initial efficiency under two
different scale datasets. It is noticed that starting a simple HMM model using random initialization and
manual hyperparameter settings on a real large database requires unacceptable pretrain time.

To overcome the shortcoming, we proposed a Low-Rank Matrix Completion based movie recommendation
method for high efficiency recommending and feature mining. Different from the HMM algorithm, Low-Rank
Matrix Completion is based on optimization theory and focuses more on theoretical calculation, so it can be
seen as a new horizon in the recommendation system.

And in the numerical experiment, the results show that the proposed method: Low-Rank Matrix Com-
pletion is much faster than the HMM based method and has no inferior recall rate. Moreover, it is noted
that the proposed method can help determine the initial probability and hyperparameters of HMM, which
significantly reduces the amount of training required for HMM.

To conclude, in this paper, we provide an optimization algorithm that can replace the traditional HMM
algorithm: Low-Rank Matrix Completion. Its superior performance (mainly due to extremely short running
time) makes it possible in many cases to replace the once widely used HMM algorithm for recommendation in
industries such as movies. Although HMM based recommendation system is no longer the most mainstream
method, we believe that the proposed method: Low-Rank Matrix Completion is still a valuable idea for
other systems relying on HMM training.

References

[1] C.-G. Chiru, C. Preda, V.-N. Dinu, and M. Macri, “Movie recommender system using the user’s psy-
chological profile,” in 2015 IEEFE international conference on intelligent computer communication and
processing (ICCP), pp. 93-99, IEEE, 2015.

[2] R. Hande, A. Gutti, K. Shah, J. Gandhi, and V. Kamtikar, “Moviemender-a movie recommender
system,” International Journal Of Engineering Sciences & Researchtechnology ISSN, pp. 2277-9655,
2016.

[3] M. Kumar, D. Yadav, A. Singh, and V. K. Gupta, “A movie recommender system: Movrec,” Interna-
tional Journal of Computer Applications, vol. 124, no. 3, 2015.

[4]

[10]

[11]

[12]

A. Bilge, C. Kaleli, I. Yakut, I. Gunes, and H. Polat, “A survey of privacy-preserving collaborative
filtering schemes,” International Journal of Software Engineering and Knowledge Engineering, vol. 23,
no. 08, pp. 1085-1108, 2013.

P. Li and S. Yamada, “A movie recommender system based on inductive learning,” in IEEFE Conference
on Cybernetics and Intelligent Systems, 2004., vol. 1, pp. 318-323, IEEE, 2004.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing surveys (CSUR),
vol. 31, no. 3, pp. 264-323, 1999.

G. Arora, A. Kumar, G. S. Devre, and A. Ghumare, “Movie recommendation system based on users’
similarity,” International journal of computer science and mobile computing, vol. 3, no. 4, pp. 765-770,
2014.

L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,”
Proceedings of the IEEFE, vol. 77, no. 2, pp. 257-286, 1989.

P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion using alternating minimization,”
in Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pp. 665-674, 2013.

B. Vandereycken, “Low-rank matrix completion by riemannian optimization,” SIAM Journal on Opti-
mization, vol. 23, no. 2, pp. 1214-1236, 2013.

F. J. Kirély, L. Theran, and R. Tomioka, “The algebraic combinatorial approach for low-rank matrix
completion.,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1391-1436, 2015.

H. Liu, J. Hu, Y. Li, and Z. Wen, “Optimization modeling, algorithms and theory,” 2020.

