
Teaching Deep Neural Network to Play Go and Chinese Chess

Xu Bowen
2020533049

ShanghaiTech University
xubw1@shanghaitech.edu.cn

Ji Kaiyang
2020533124

ShanghaiTech University
jiky@shanghaitech.edu.cn

Li Binglian
2020533125

ShanghaiTech University
libl@shanghaitech.edu.cn

Ni Zhijie
ShanghaiTech University

nizhj1@shanghaitech.edu.cn

Abstract

Our work has three main parts:

1. The first is network innovation. Based on alphazero,
we use different tricks to improve the deep neural net-
work in Monte Carlo tree search, evaluate its effect
and make some explanations.

2. Secondly, we try scene innovation. Apply our Monte
Carlo tree search neural network to different scenar-
ios, including but not limited to Gobang, Chess, and
more, and try scenarios not seen before.

3. Finally, based on alphazero, we extend an advanced
algorithm model : muzero and apply it to different sce-
narios.

1. Introduction
Since the rise of AlphaGo, many chess games AI based

on deep reinforcement learning have been developed, such
as AlphaGo Zero and AlphaZero. In recent years, these de-
veloped models not only play a role in chess AI, but also
have been widely used in many fields, such as medical and
other industries, and have made many important achieve-
ments. Therefore, the study of these models based on deep
reinforcement learning is of great significance and value for
the development of AI industry.

Therefore, the main objective of our project is to con-
tinue in-depth research and development on the landmark
AlphaZero model. We will apply some deep learning tech-
niques, such as pooling, multi-head model, and so on, to
optimize existing networks to improve the performance of
the AlphaZero model. And on the basis of AlphaZero con-
tinue to study more universal advanced version : Muzero.

Compared with AlphaZero, Muzero can adapt to more en-
vironments, so it can be widely used in more fields. More-
over, we will use Chinese chess to test the performance
of the improved AlphaZero model. We made our own vi-
sual interface of chess, and compared our improved Alp-
haZero model with the baseline model and some ai mod-
els on the market. Through experiments, it is found that
our improved model through deep learning skills has in-
deed brought about an improvement in performance and
winning rate, which also proves that our work is of great
significance.

Our members contributions:

• Li Binglian: Chess logic implementation and baseline
network implementation

• Ni Zhijie: Modify network to find deep learning tricks
that improve model performance

• Ji Kaiyang: Visualization and training improved model

• Xu Bowen: Implementation and training of muzero
model

2. Related Work
We have known the main idea of AlphaZero [7], which

makes a combination of Deep Convolutional Neural Net-
works (CNN) and Monte Caerlo Tree Search (MCTS). Our
team have built a basic model on chinese chess so that it
can train and collect data by self-playing and make some
simple action with MCTS prediction. Our contribution in-
cludes find some deep learning tricks on training to build
more powerful models and higher efficiency.

2.1. Warm-Start

Since the neural network is trained without expert data
and fast rollout policy, it faces a cold-start problem, which

may lead the model lose essentiality of some complex
games. [9]. One approach to warm-start search enhance-
ment is to use rollout instead of randomly initialized neu-
ral network for the first number of I ′ iteratoins and then
switch it to the regular network. The warm-start iteration
number I ′ can be either fixed or adaptive(which can remove
the hyper-parameter through algorithms). Wang’s work has
shown that the warm-start works better when the games get
depper. [9]

2.2. Multiple MCTS

Since its hard to balance the accurate state estimation
by DNN and number of simulations by MCTS. One of the
recently developed method is the Mulitiple Policy Monte
Carlo Tree Search [5], which trians 2 Policy-Value Neural
Networks with different sizes. The smaller networks takes
a large number of simulations to get state priorities for the
large neural network. Then the large neural network can
make less simulations with better accuracy, which shows a
notable improvement compared to AlphaZero.

Another method is the Dual Monte Carlo Tree Search
[4], which makes 2 different tree simulations. The author
uses a single neural network to simulate both trees. Also the
author reduce the number of value updates by a combinition
of PUCT, sliding window and ϵ-geedy algorithms.

2.3. Multihead DNN

The AlphaZero [7] trains one 2-head neural network to
estimate policy and value od the inpuet game state. How-
ever, trianing such a model need a large amount of com-
puting resource. Many researchers are looking for more
powerful and efficient methodes to make AlphaZero more
producable.A third action-value head has been designed for
the net work.Such structure perform better than 2 head net-
work at the zero-style iterative learning. [1] In addition, No-
gozero+, change the network to be 4 heads,which include
domination,score, and initial 2 heads. It also replace half
number of the residual blocks by global attention residual
blocks, each in the interval of two residual block.Such struc-
ture increases the training speed to six times of initial alp-
hazero and aims to decrease the cost of training of similar
areas. [2] These innovation give us idea to improve the net-
work performance in a significiantly lower computility than
the alphazero use.

2.4. Hyperparameters and Loss Function

There has been some researches on the design choices
for hyperparameter values and loss functions [8]. It is dif-
ficult because of the computational cost to explore the pa-
rameter space. In general, the higher values of all hyper-
parameters lead to higher playing strength, while the outer
iteration are more promising than inner iterations. Mean-
while, the best setting of loss functions usually depends on

the game (with rules and size) rether than always the sum of
policy and value loss. While if no essential information of
the game is present, it can be a good default compromise.

3. Method
3.1. Monte Carlo Tree Search

Figure 1. MCTS Procedures

The focus of MCTS is on the analysis of the most
promising moves, expanding the search tree based on ran-
dom sampling of the search space. The application of
Monte Carlo tree search in games is based on many sim-
ulations, also called roll-outs. In each simulation, the game
is played out to the very end by selecting moves at ran-
dom. The final game result of each simulation is then used
to weight the nodes in the game tree so that better nodes are
more likely to be chosen in future simulations.

Each round of Monte Carlo tree search consists of four
steps:

• Selection: Start from root R and select successive
child nodes until a leaf node L is reached. The root
is the current game state and a leaf is any node that
has a potential child from which no simulation has yet
been initiated. The section below says more about a
way of biasing choice of child nodes that lets the game
tree expand towards the most promising moves, which
is the essence of Monte Carlo tree search.

• Expansion: Unless L ends the game decisively (e.g.
win/loss/draw) for either player, create one (or more)
child nodes and choose node C from one of them.
Child nodes are any valid moves from the game po-
sition defined by L.

• Simulation: Complete one random simulation from
node C. This step is sometimes also called playout
or rollout. A simulation may be as simple as choosing
uniform random moves until the game is decided (for
example in chess, the game is won, lost, or drawn).

• Backpropagation: Use the result of the simulation to
update information in the nodes on the path from C to
R.

The main difficulty in selecting child nodes is maintain-
ing some balance between the exploitation of deep variants
after moves with high average win rate and the exploration
of moves with few simulations.Researches have found that
the formula wi

ni
+ c

√
lnNi

ni
is good to measure the value of

different moves,where the parameters mean:

• wi stands for the number of wins for the node consid-
ered after the i-th move.

• ni stands for the number of simulations for the node
considered after the i-th move.

• Ni stands for the total number of simulations after the
i-th move run by the parent node of the one considered.

• c is the exploration parameter—theoretically equal to√
2.

But the method is based on simulations while each sim-
ulation may need a long time to end,especially when the
game rules is complicated or the game has a high degree of
freedom.So it’s hard to simulate the total game process for
many times in each move.

However,it’s even harder to model a function manually
which can correctly analyse and evaluate the current game
state.To deal with this issue,we introduce neural networks
to help analyse the current game state so that we don’t need
to simulate the whole game process,thus applying MCTS
faster and more accurate.

3.2. Network Structure

We will use a CNN to analyse the current Chess Board
and predict all possible drops and their corresponding prob-
abilities.

Firstly,there’s 7 kinds of chess pieces in the China Chess
game with a color of red or black indicating different
player.So there’s 14 kinds of chess pieces in a game board
in total.We use an indicator vector of length 14 to encode
each type of chess piece.Then we have to record the coordi-
nate of a specific chess piece on the chess board.So we will
need a matrix of shape 14 · 10 · 9 to represent the current
chess board,where the last 2 dimensions encode the board
coordinate of a certain chess piece.

So far we have encode the spatial information of the cur-
rent chess board into the matrix.We also try to encode the
time domain information into our matrix representation.We
use an indicator matrix of shape 10 · 9 to represent the last
move of the opponent player,where the position of the cer-
tain chess piece before move and the position after move
is 1.What’s more,we add an indicator matrix of the same
shape to encode the current player.If the current is the first
player,the matrix is all 1.The matrix is all −1 else.

Here’s the network structure.

Figure 2. Structure of Networks

The net part which predicts the probability of each pos-
sible move is called the PolicyHead and the part which pre-
dicts the win-rate is called the ValueHead.

3.3. Train Pipeline

At the very beginning,the net is totally untrained.So we
will use a Pure MCTS Player to play with itself and record
the game process.Then We will then train the neural net-
work with the collected data.After the net has been trained
for a while, we will use the trained network to start self-
play and record the games.The recorded games will then be
used as the train data.And we will repeat the iteration and
strengthen the network during this process.

We will start parallel sessions to accelerate collecting
game records,and use one session to train the model iter-
atively based on self-play game records.The algorithms are
shown below.

Algorithm 1: Collect

1 repeat
2 game←− new Game()
3 records←− previous records
4 policy←− trained model
5 if policy is None then
6 player←− PureMCTSPlayer()
7 else
8 player←− MCTSPlayer(policy)
9 end

10 sample = game.selfplay()
11 records.append(sample)
12 Save records
13 until;

Algorithm 2: Train

1 repeat
2 policy←− trained model
3 repeat
4 records←− previous records
5 until len(records) ≥ batchsize;
6 states,mcts probs,winners = records
7 probs, value = policy(states)
8 value loss = ||value,winners||22
9 policy loss = sum(mcts probs·probs,dim=1)

batchsize
10 Take gradient descent step on

value loss + policy loss
11 until;

4. Experiments
4.1. Squeeze-and-Excitation block

In this part,we put Squeeze-and-Excitation block after
the residual blocks sequence in the origin network structure,
and add drop out layers before each fully-connected layer in
both policy head and value head. Squeeze-and-Excitation
block compress the N * C * H* W input to N * C * 1 * 1,
and scale the origin channels after several fully-connected
layer, ReLU and sigmoid, in order that the network learn
the importance of different channels. [3] Experiments show
that the AI with SE block beat the baseline.

Figure 3. Squeeze-and-Excitation block [3]

4.2. Implementation Details

Training acceleration In order to speed up the training,
we adopt the left-right symmetric transformation of the
original model in the collect step to expand the training
data set, so that the data samples in each training are twice
as large as the original ones. Chinese chess is different
from Go, which has better symmetry. Go can be performed
four times of symmetry in horizontal, vertical and diagonal,
meanwhile, three times of rotation in 90 degrees, 180 de-
grees and 270 degrees, so as to reach 8 times of data scale.
Chess, on the other hand, has less symmetry, so we only use
twice as much data amplification.

4.3. Comparison and Results

After thousand times of chess training, our model has
reached the amateur level of Chinese chess players. With

Figure 4. The original Residual module (left) and the SE-ResNet
module (right) [3]

the same number of playouts, our model has a significantly
higher winning rate than the model using pure Monte Carlo
tree Search (baseling). Meanwhile, after adding Squeeze-
and-Excitation blocks, our model achieves a much higher
winning rate. (higher playout means deeper and larger
Monte Carlo tree in the search step).

The table below shows our winning rate against pure
MCTS players, sampled from 20 plays:

Player-Playout Pure-10Pure-100 Pure-1000

CNN-10 55% 35% 10%
CNN-100 80% 75% 30%
CNN-1000 95% 85% 45%

Table 1. Baisic Deep MCTS v.s. Pure MCTS

Player-Playout Pure-10Pure-100 Pure-1000

SE-10 55% 40% 25%
SE-100 85% 75% 35%
SE-1000 100% 95% 55%

Table 2. SE-Deep MCTS v.s. Pure MCTS

The results show that we introduce some innovative tech-
niques of deep learning to optimize the network can indeed
make the performance of the model better, indicating that
our work is full of meaning and value.

5. Conclusion

We choose Pure MCTS with 600 simulation times as the
baseline.

After training for 400 batches, AI with CNN has learnt to
predict to be checkmated and take action to avoid it.Also,it
has learnt to use Shi and Xiang to defend and use Pao to
attack.But it still can’t give a good prediction of move.

After training for 1000 batches,AI with CNN can beat
baseline in most cases.In an extreme case,AI checkmates
the MCTS player within 6 steps.But AI still can not beat
Human player and is short-sighted when giving some pre-
dictions.

AI with SE block also beat the baseline, which proves
that training make the AI stronger in Chinese chess. The
theoretical optimization lacks the proof of a comparison
between a origin network and new network with SE(Both
should be trained for the strictly same time).

The development of AI is fast at the very beginning.But
after training for about 1500 batches, the development of
AI becomes slow due to lack of self-play samples.It may
need more collectors to collect samples for it to continue
developing.

6. Advancement: Muzero
6.1. Introduction

However, AlphaZero still has its limitations: it still needs
to enter the rules of a particular game, which means that it
is deficient in the general availability of different games.
So again, we introduced new neural networks to learn the
rules of a game so that our AI could learn the game with-
out knowing the rules of a game, which is the basic idea
of muzero. As you can see, this improvement of muzero
greatly enhances the universality of different games, thus
becoming a new milestone. Next, we’ll introduce muzero
and some of our work on muzero. [6]

6.2. Algorithm Review

Unlike AlphaZero, Muzero’s biggest difference is not in-
putting the rules of the game. The rules referred to here
include:

• terminal state and judgment of rewards

• State transition mechanism: (st, at)→ st+1

Therefore, in order to learn the rules of the game, Muzero
introduces two additional neural networks: representation
network and dynamics network.

In AlphaZero, a single prediction network is used to es-
timate the policy and value. While in Muzero, the role of
prediction network is similar to that of prediction network
in AlphaZero, which is used to estimate policy and value in
the next step. On the other hand, the other two networks:
representation network and dynamics network are used to
learn the rules of the game.

So a summary of Muzero’s deep neural networks:

Figure 5. How Muzero acts in environment

• Representation Network h: input real game observa-
tions o, output hidden state s;

• Dynamics Network g: input hidden state s and action
a, output next hidden state s′ and reward r

• Prediction Network f : input hidden state s, output pol-
icy p and value v

Next, we will explain how muzero works in a real envi-
ronment. The schematic is shown in Figure 5.

First, when inputting a real game situation, representa-
tion network (h) converts it into a hidden state s. After that,
Muzero will use Monte Carlo tree search to expand the cur-
rent situation (expressed as hidden state s). Select the next
action a of the search tree based on the policy and value es-
timated by prediction network (f). Then, the current hidden
state s and the selected action a are input into the dynamics
network (g) to obtain the transferred state s′ and the action
reward r. Then expand the current state s′ and continue the
Monte Carlo tree search. After an episode of MCTS search
(Figure 6), the Monte Carlo tree will give the next action
at+1.

6.3. How to Train a Muzero Model

We then describe how Muzero trained its model. First,
we store the observation records obtained by muzero inter-
acting with the environment in replay buffer. Then, during
the training process, we will take some records from replay
buffer for training.

From previous records in replay buffer, we can get the
search policy π, the value of state:z, and the observed re-
ward r. The state value z in MCTS is calculated by the
following bootstrapping method:

zt = ut+1 + γut+2 + · · ·+ γn−1ut+n + γnνt+n

where ν is the estimated value of MCTS.
When it comes to how to train the muzero model, we will

use the records in replay buffer as a benchmark to train the
model. Therefore, we will get the following minimization
goals:

• Minimize the gap between the policy estimate p in the
predicted network and the search policy π.

Figure 6. MCTS in Muzero

Figure 7. How to Train a Muzero Model

• Minimize the gap between the estimated state value v
and the actual state value z in the predict network.

• Minimize the gap between the predicted reward r of
the dynamics network and the actual observed reward
u.

In order to improve efficiency and accuracy in training, we
will jointly train the above three training objectives at the
same time and add a L2 regularization. Therefore, we can
get the final network loss l(θ), and through this loss, we
use the backward propagation method to update the network
parameter θ:

lt(θ) =

K∑
k=0

lr(ut+k, r
k
t) + lv(zt+k, v

k
t) + lp(πt+k,pk

t) + c||θ||2

(1)

where lr, lv and lp are loss functions for reward, value, and
policy respectively. The schematic of training is shown in
Figure 7.

Figure 8. Muzero Demo

6.4. Innovations from AlphaZero

Compared to the previous AlphaZero, the most impor-
tant feature of Muzero is that it no longer needs to enter
the rules of the game to learn the rules and the game. To
achieve this, muzero introduced two new deep neural net-
works based on the prediction network: representation net-
work and dynamics network to learn rules.

This innovation greatly enhances the generality of
Muzero, allowing Muzero to be used in more applications,
which is its advantage over Alphazero.

6.5. Experiments of Muzero

Due to limited computing resources, we used Gomoku
to experiment with Muzero rather than other games which
have large state space.

The following is an example of simulation result in figure
8:

Due to limited computing resources and insufficient
training time due to time constraints, our muzero has not
yet been trained to a certain level. However, after testing,
it can be known that the trained muzero is able to know the
rules of the game, that is, it can learn certain chess princi-
ples and make some rules-compliant responses. This proves
the effectiveness of the muzero model.

References
[1] Chao Gao, Martin Mueller, Ryan Hayward, Hengshuai Yao,

and Shangling Jui. Three-head neural network architecture
for alphazero learning, 2020. 2

[2] Yifan Gao and Lezhou Wu. Efficiently mastering the game of
nogo with deep reinforcement learning supported by domain
knowledge. Electronics, 10(13), 2021. 2

[3] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. CoRR, abs/1709.01507, 2017. 4

[4] Prashank Kadam, Ruiyang Xu, and Karl Lieberherr. Dual
monte carlo tree search, 2021. 2

[5] Li-Cheng Lan, Wei Li, Ting-Han Wei, and I-Chen Wu. Mul-
tiple policy value monte carlo tree search, 2019. 2

[6] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
and et al. Mastering atari, go, chess and shogi by planning
with a learned model. abs/1709.01507, 2019. 5

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-
rent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lill-
icrap, Karen Simonyan, and Demis Hassabis. A general re-
inforcement learning algorithm that masters chess, shogi, and
go through self-play. Science, 362(6419):1140–1144, 2018.
1, 2

[8] Hui Wang, Michael Emmerich, Mike Preuss, and Aske Plaat.
Analysis of hyper-parameters for small games: Iterations or
epochs in self-play? CoRR, abs/2003.05988, 2020. 2

[9] Hui Wang, Mike Preuss, and Aske Plaat. Adaptive warm-start
mcts in alphazero-like deep reinforcement learning. Lecture
Notes in Computer Science, page 60–71, 2021. 2

	. Introduction
	. Related Work
	. Warm-Start
	. Multiple MCTS
	. Multihead DNN
	. Hyperparameters and Loss Function

	. Method
	. Monte Carlo Tree Search
	. Network Structure
	. Train Pipeline

	. Experiments
	. Squeeze-and-Excitation block
	. Implementation Details
	. Comparison and Results

	. Conclusion
	. Advancement: Muzero
	. Introduction
	. Algorithm Review
	. How to Train a Muzero Model
	. Innovations from AlphaZero
	. Experiments of Muzero

