
Report on Graph Neural Network Bandit

Xu Bowen
xubw1@shanghaitech.edu.cn

Zhang Tianyi
zhangty12022@shanghaitech.edu.cn

Zhong Wenfu
zhongwf2022@shanghaitech.edu.cn

Abstract

The graph neural network bandit first applies the graph neural networks to approxi-
mate the reward. With the help of graph neural networks, the input domain extends
from Euclidean space to the Reproducing Kernel Hilbert Space. After reproduc-
ing the code of the graph neural network bandit, this report extends its setting.
Considering the dependency among arms, we use a social graph to model it and
derive UCB-type algorithms. Besides, we try to introduce the Constraint setting
in the GNN Bandits scenario to ensure that the accumulative costs of interacting
with the environment are within a certain budget. By using Graph Neural Network
to estimate the reward and cost, and applying Primal-Dual algorithm to control
their balance, we propose a new algorithm: GNN-PD. This Constrained GNN
Bandits algorithm can be widely applied in scenarios with large consumption, such
as experiments on chemicals and drugs.

1 Introduction

Contextual bandits are a specific type of multi-armed bandit problem where the additional contextual
information (contexts) related to arms are available at each round, and the learner intends to refine
its selection strategy based on the received arm contexts and rewards. Various contextual bandit
algorithms have been applied in real-world recommendation tasks, such as online content recommen-
dation and advertising (Li et al. [2010], Wu et al. [2016]), and clinical trials (Durand et al. [2018],
Villar et al. [2015]). The main idea is to exploit the correlation between the rewards and the contexts.
On the one hand, linear models or kernelized models are used to model the relationship between the
reward and context(Srinivas et al. [2012], Chowdhury and Gopalan [2017]), and on the other hand,
they use neural networks to approximate the reward function(Zhou et al. [2020]).

Learning graph structure data, such as molecular or biological map representations, requires the
design of sequential methods that effectively utilize graph structures. There are prediction tasks in
graph domain such as designing novel materials (Guo and Buehler [2020]), drug discovery (Jiang
et al. [2021]), discovering social relationship (Wu et al. [2020]). Graph neural networks (GNNs) are
deep learning based methods that operate on graph domain. Due to its convincing performance, GNN
has become a widely applied graph analysis method recently. With the power of GNN to estimate
a graph reward, a bandit optimizing algorithm has been proposed by Kassraie et al. [2022]. This
algorithm employs GNN with one convolutional layer to estimate the unknown reward and achieves
sublinear cumulative regret bounds.

In the report, it extends the setting of the graph neural network bandit (Kassraie et al. [2022]),
combines the graph feedback with it, and applies constraints on the bandit.

Related Work. Our work is based on the neural bandit, in which a single hidden layer convolutional
network (Zhou et al. [2020]) is used to estimate the reward function. It presents key structural
assumptions about graph reward functions and establishes a new connection between additive

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

permutation-invariant kernels and GNTKs. It constructs an effective confidence set for graph neural
networks and uses it to construct a GNN bandit algorithm that enables sublinear regret.

The bandit problem with graph feedback, proposed in Caron et al. [2012], is modeled by a directed
graph, where nodes are the bandit’s arms, and once an arm is triggered, all its incident arms are
observed. A naturally challenging question is how the graph structure affects the min-max regret.
This problem has been widely studied (Mannor and Shamir [2011], Alon et al. [2013], Bian et al.
[2022]).

To solve the Constrained Bandits problem, the paper Shangshang et al. [2023] uses multi-layer
perceptrons to estimate the reward and cost functions. Also, apply primal-dual algorithm (Neural-PD)
to choose the optimal arms. The Neural-PD algorithm achieves an extremely excellent performance
of sublinear regret and zero constraint violation. However, this algorithm cannot be used to solve the
Graph Structured problem.

2 Formulation

2.1 GNTK

To clarify the use of GNTK, we firstly propose the graph classification problem. We denote the
graph as G(V,E), where V is the set of vertices and E is the edges set. Denote |V | as the number of
vertices and |E| as the number of edges. The graph classification problem can be stated as: given a
specific graph, classify it into its corresponding class. For example, we have two classes of molecular:
high energy and low energy.

To achieve the goal of classification, we need to extract the feature of a graph, which facilitates us to
use a special kinds of neural network: GNN(Graph Neural Network). Therefore we introduce the
definition of GNN and its relationship with the traditional NNs.

We have our architecture of GNN as below,

f (1)
(
h̄G,j

)
= W(1)h̄G,j

f (l)
(
h̄G,j

)
=

√
2

m
W(l)σrelu

(
f (l−1)

(
h̄G,j

))
∈ Rm, 1 < l ≤ L

fGNN (G; θ) =
1

N

N∑
j=1

√
2W(L+1)σrelu

(
f (L)

(
h̄G,j

)) (1)

where h̄G,j is the feature of node j in the graph G, which takes the graph as input. This is actually an
instance of the graph convolutional network(GCN) (Kipf and Welling [2016]).

Similarly we could have the NN as,

f (1) (x) = W(1)x

f (l) (x) =

√
2

m
W(l)σrelu

(
f (l−1) (x)

)
∈ Rm, 1 < l ≤ L

fNN (x; θ) =
√
2W(L+1)σrelu

(
f (L) (x)

)
∈ R

(2)

It is easy to find the common structure between them. Here we give out some basic observations and
conclusions, and then introduce the permutation invariant kernel of the Reproducing Kernel Hilbert
Space (RKHS), with NTK (Jacot et al. [2018]) and GNTK.

Theorem 1 There exists equivalence between GNN and NN as,

fGNN (G; θ) =
1

N

N∑
i=1

fNN

(
h̄G,i; θ

)
Theorem 1 is obvious and trivial and could be proven in a simple way. Then we introduce the property
of permutation invariant, which is a crucial character of the graph data. Consider a permutation
operator c, which will change the ordering of nodes (e.g. node number of: 1, 2, 3, 4 will be converted
into: 3, 4, 1, 2). According to this, we could have the permutation invariant of the GNN.

2

Theorem 2 For any permutation operator c we have,
fGNN (G; θ) = fGNN (c ·G; θ)

Theorem 2 is apparent because we added up all the nodes in the GNN architecture formulation(1),
and no matter how the nodes are ordered there’s no change in the result.

Furthermore, we want the corresponding kernel also to be permutation invariant, thus we could define
the kernel of RKHS for two graphs as,

k̄ (G,G′) =
1

|PN |2
∑

c,c′∈PN

1

N

N∑
j=1

kNN

(
h̄G,c(j), h̄G′,c′(j)

)
where the kNN is the corresponding NTK of the neural network.

We here introduce the Neural Tangent Kernel(NTK) theory. Now consider the first order Taylor
approximation of fNN (x; θ) at the initial point θ0 as,

f̃NN (x; θ) = gNN (x; θ0)
T
(θ − θ0) .

Without loss of generality, we here assume fNN (x; θ0) = 0. It is worth noting that its corresponding
kernel is k̃ (xi,xj) = gNN (xi; θ0)

T
gNN (xj ; θ0). According to (Jacot et al. [2018]), with some

specific initialization of parameters we could have,

lim
m→∞

k̃ (xi,xj)

m
= kNN (xi,xj)

which kNN (xi,xj) is what we called Neural Tangent Kernel.

Similarly, we could find the kernel k̃ (Gi, Gj) on the first order approximation of GNN and define
the corresponding Graph Neural Tangent Kernel(GNTK) as,

kGNN (Gi, Gj) = lim
m→∞

k̃ (Gi, Gj)

m

Theorem 3 There exists a relationship between NTK and GNTK as,

kGNN (G,G′) =
1

N2

N∑
j,j′

kNN

(
h̄G,j , h̄G,j′

)

Theorem 3 directly follows from theorem 1.

2.2 GNN Bandits

Traditional bandit algorithm mainly concentrates on the estimation of reward expectation, however, it
does not utilize the contextual information well. LinUCB considers maintaining a linear model to
predict the reward, however, the ability of linear function is limited. Neural UCB (Zhou et al. [2020])
replaces the linear model with a neural network that is more expressive but not permutation invariant.
To utilize the structure information of the graph, we can design a scheme that is embedded with GNN.
Considering the completeness, we first introduce two components in kernelized bandit: information
gain and confidence sets.

2.2.1 Information Gain

The learner in the bandit problem looks for the optimal decision while observing new rewards, and
the maximum information gain indicates the speed of approaching the optimal reward function f∗.
Formally, we have the information gain defined as,

I (G1, . . . , GT ; kGNN) =
1

2
logdet(I+

KGNN,T

λ
)

where KGNN,T = [kGNN (Gi, Gj)]i,j≤T being the kernel matrix. Moreover, we assume here that
during the process, we observed contextual graphs: G1, . . . , G2 and the corresponding rewards
sequence with sub-Gaussian noise centered at zero with the proxy variance being λ.

3

Theorem 4 Suppose the observation noise is i.i.d., and drawn from a zero-mean sub-Gaussian
distribution, and the input domain is G. Then the maximum information gain associated with kGNN

is bounded by,

γGNN,T = max{G1,...,GT }I (G1, . . . , GT ; kGNN) = O
(
T

d−1
d (logT)

1
d

)

γGNN,T can be expressed in the regret bound.

2.2.2 Confidence Sets

Another useful tool for the analysis of regret bound should be the confidence sets, which gives us the
extent of optimal reward function with high probability. Formally, we have,

P (∀G ∈ G : f∗ (G) ∈ Ct−1 (G, δ)) ≥ 1− δ

Moreover we express the confidence sets as Ct−1 (G, δ) =
[
µ̂t−1 ± βtθ̂t−1

]
, and βt depends on the

confidence level δ. We can estimate these parameters as,

µ̂t−1 (G) : = fGNN

(
G; θ

(J)
t−1

)
σ̂t−1 (G) : =

gGNN

(
G; θ0

)T
√
m

(
λI+

1

t

t−1∑
i=1

gGNN

(
Gi; θ

0
)
gGNN

(
Gi; θ

0
)T

m

)−1
gGNN

(
G; θ0

)
√
m

We denote λ0 is the minimum eigenvalue of the kernel matrix calculated for the entire domain, i.e.
KGNN = [kGNN (G,G′)]G,G′∈G . And we could note that we replace the gradient of GNN with
gGNN

(
G; θ0

)
, which comes from the assumption of NTK.

Theorem 5 Set δ ∈ (0, 1). Suppose f∗ ∈ HkGNN
with a bounded norm ||f∗||kGNN

≤ B. As-
sume that random sequences (Ci)i<t and (ϵi)i<t are statistically independent. Let the width
m = poly

(
t, L,B, |G|, λ, λ−1

0 , log (N/δ)
)
, learning rate η = C (Lm+mλ)

−1 with some uni-
versal constant C, and J ≥ 1. Then for all G ∈ G, with probability of at least 1− δ,

|f∗ (G)− µ̂t−1 (G) | ≲ βtσ̂t−1 (G)

where βt ≈
√
2B + σ√

λ

√
2 log 2|G|/δ.

Theorem 4 and Theorem 5 are two useful tools for our analysis of regret bound.

3 Algorithms

In this section, we will introduce two main results from (Kassraie et al. [2022]), and discuss the regret
bound and effect.

3.1 Comparison

Algorithm 1 and Algorithm 2 respectively show a normal variant of Neural UCB and a phased
elimination implementation. The GNN-PE(i.e. the latter) considers finding a reasonable candidate
set and explore on it.

Based on the setting in the paper, we further conducted a comparison of them as shown in Figure 1.

3.2 Convergence Analysis

We now get deeper into the convergence analysis of the GNN Phased Elimination algorithm. Recall
our useful tools for analysis: 1)Information Gain; 2)Confidence Sets. Firstly, we show that there
exists a correlation between Information Gain and the estimated variance.

4

Algorithm 1 GNN-UCB
Require: m,J, η, λ, βt, T

Initialize network parameters to a random θ0, and K̂0 = σ2I
for t = 1 . . . T do

for G ∈ G do
σ̂2
t−1 ← gT

GNN

(
G; θ0

)
K̂−1

t−1gGNN

(
G; θ0

)
/m

UG,t ← fGNN

(
G; θ

(J)
t−1

)
+ βtσ̂t−1 (G)

end for
Gt = argmaxG∈GUG,t

Select Gt and append the rewards vector yt by the observed reward.
Set K̂t ← λI+

∑
i≤t gGNN

(
Gi; θ

0
)
gGNN

(
Gi; θ

0
)
/mt

Calculate θ
(J)
t = TrainGNN

(
m,J, η, λ, θ0, (Gi, yi)i≤t

)
end for

Algorithm 2 GNN PHASED ELIMINATION
Require: m,J, η, λ, T

Set episode index e = 1, episode length Te = 1, and set of potentially optimal graphs Ge = G
Initialize network parameters to a random θ0.
for t = 1 . . . Te do

for G ∈ G do
σ̂2
t−1 (G)← gT

GNN

(
G; θ0

)
K̂−1

t−1gGNN

(
G; θ0

)
/m

end for
Select Gt = argmaxG∈Ge

σ̂2
t−1 (G)

end for
Calculate θ

(J)
e =TrainGNN

(
m,J, η, λ, θ0, (Gi, yi)

Te

t=1

)
Ge+1 =←

{
G ∈ Ge : fGNN

(
G; θ

(J)
e

)
+ βσ̂Te

(G) + 2ϵ ≥ maxG∈Ge

(
fGNN

(
G; θ

(J)
e

)
− βσ̂Te

(G)
)}

Set Te+1 ← 2Te, e← e+ 1 and return to the initialization step.

Theorem 6 The Information Gain is considered within the upper bound of the estimated variance,

σ̂2
Te

(G) ≤ 2γ̂Te

Telog (1 + λ−1)

proof. Firstly, the estimated variance decreases during the process, and hence we have,

σ̂2
Te

(G) ≤ 1

Te

Te∑
t=1

σ̂2
t−1 (Gt)

For any s ∈ [0, 1/λ], we have s2 ≤ 1
λ log(1+1/λ) log

(
1 + s2

)
. Then we have,

σ̂2
t−1 (Gt) ≤

1

log (1 + 1/λ)
log
(
1 + λ−2σ̂2

t−1 (Gt)
)

Also we have,
Te∑
t=1

log
(
1 + λ−2σ̂2

t−1 (Gt)
)
= 2I

(
G1, . . . , Gt; k̂GNN

)
≤ 2γ̂Te

Combining them we could get the proof.

Next, we introduce two bound theorem to construct the good events.

Theorem 7 Fixed an episode e, let δ̃ = δ/(3E), then for any G ∈ G with probability at least 1− δ̃
we have,

|fGNN

(
G; θ(J)e

)
− f∗ (G) | ≤ βσ̂Te

(G) + ϵ

5

Theorem 8 For δ ∈ (0, 1) and m = poly
(
t, L, |G|, λ,B, λ−1

0 , log (N/δ)
)
, with probability at least

1− δ we have,

γ̂T ≤ γT + ϵ (m)

where γT is the maximum information gain of GNTK over G and ϵ (m) = o
(
m−1/4

)
.

With the help of Theorem 7 and Theorem 8, we can construct the good event. Specifically, we define
events:

Ai =
{
|fGNN

(
G; θ

(J)
i

)
− f∗ (G) | ≤ βσ̂Ti (G) + ϵ

}
B =

{
γ̂T ≤ γT + ϵ (m) |δ̃ =

δ

3

}
Then we define the good event as: C =

(⋂E
i=1 Ai

)
∩B. According to the union bound we have,

P

(
E⋂
i=1

Ai

)
= 1− P

(
E⋃
i=1

Āi

)
≥ 1− δ

3

P (C) = 1− P
(
C̄
)
≥ 1− 2δ

3

In the next paragraphs, we will condition on the good event.

Denote G∗ as the best choice, G(e)
t as the t-th choice in the e-th epoch and f∗ as the actual reward

function.

Theorem 9 Under the good event C defined before, for any e and t we have,

f∗ (G∗)− f∗
(
G

(e)
t

)
≤ 4β max

G∈Ge−1

(G) + 4ϵ

proof. Firstly, we should announce that the optimal solution will not be eliminated during the
elimination process.

f∗ (G) ≤ f∗ (G∗) ,∀G ∈ G

f∗ (G) ≥ fGNN

(
G; θ(J)e

)
− βσ̂Te (G)− ϵ

f∗ (G∗) ≤ fGNN

(
G∗; θ(J)e

)
+ βσ̂Te (G

∗) + ϵ

The above inequalities come from Theorem 7, and combine them we can finish the claim. Then we
come back to our objective,

f∗ (G∗)− f∗
(
G

(e)
t

)
≤fGNN

(
G∗;θ

(J)
e−1

)
+ βσ̂Te−1

(G∗) + 2ϵ

−
(
fGNN

(
G

(e)
t ;θ

(J)
e−1

)
− βσ̂Te−1

(
G

(e)
t

))
=
(
fGNN

(
G∗; θ

(J)
e−1

)
− βσ̂Te−1

(G∗)− ϵ
)

+ 2βσ̂Te−1
(G∗) + 4ϵ

−
(
fGNN

(
G

(e)
t ; θ

(J)
e−1

)
+ βσ̂Te−1

(
G

(e)
t

)
+ ϵ
)

+ 2βσ̂Te−1

(
G

(e)
t

)
≤ 4β max

G∈Ge−1

σ̂Te−1
(G) + 4ϵ

The last inequality comes from,

fGNN

(
G

(e)
t ; θ

(J)
e−1

)
+ βσ̂Te−1

(
G

(e)
t

)
+ ϵ ≥ fGNN

(
G∗; θ

(J)
e−1

)
− βσ̂Te−1

(G∗)− ϵ

which can be referred from the elimination step.

6

Theorem 10 The regret of GNN-PE is,

RT = O

(√
TγT

(
B +

σ√
λ

√
log
|G| log T

δ

))

proof. By referencing to Theorem 8 and Theorem 9, we could have,

RT ≤ m1B +

E∑
e=2

Te∑
t=1

4β max
G∈Ge−1

σ̂Te−1
(G) + 4ϵ

≤ m1B +

E∑
e=2

4Teβ

√
2γ̂Te−1

Te−1 log (1 + λ−1)
+ 4Teϵ

= m1B +

E∑
e=2

8β

√
2Te−1γ̂Te−1

log (1 + λ−1)
+ 4Teϵ

≤ m1B +
E∑

e=2

8β

√
2T γ̂T

log (1 + λ−1)
+ 4Teϵ

≤ m1B + 8(log(T) + 1)

(
β

√
2T γ̂T

log (1 + λ−1)
+ 4Tϵ

)

≤ m1B + 8(log(T) + 1)

(
β

√
2T (γT + ϵ(m))

log (1 + λ−1)
+ 4Tϵ

)

4 Graph bandit with graph feedback

In the traditional bandit problem, we do not consider the relationship between arms, however, in
many practical scenarios, there exists dependence between arms. In this section, we introduce the
arms social network and try to utilize such connectivity information.

Consider there exists a networkN between arms with the adjacent matrixA, which indicates the share
of information between arms. For example, pulling an arm will give feedback not only consisting
of its own reward but also of its neighbor’s. How to use the extra information in the exploration
and exploitation behavior is really worth studying. Inspired by the work of (Bian et al. [2022]), we
proposed two variants based on GNN: GGRIND and EGGRIND, which have shown an efficient
utilization of the correlation.

4.1 Graph Feedback

Formally, a K-armed bandit problem is defined by K distributions P1, P2, . . . , PK for each arm of
the bandit with respective means µ1, µ2, . . . , µK . All rewards {Xi,t, i ∈ [1,K], t ≥ 1} are assumed
to be independent. Then the mean estimate after m observations is X̄i,m := 1

m

∑m
s=1 Xi,s. In the

standard bandit problem, the only information available at time t is the sequence (XIs,s)s≤t.

Now we consider the setting of the bandit with graph feedback. We use a social graph to denote the
dependent relationship between arms. Given an undirected graph Gf = (V,E), V is the nodes set
that represents the arms and any edge e ∈ E represents the relationship between two nodes. When
we pull the arm i, we not only get Xi,t, but also receive the rewards from all connected nodes in
graph Gf . Let N(i) denote the observation set of arm i consisting of i and its neighbors in Gf . Thus
we have the number of observations as

Oi(n) :=

n∑
t=1

1 {It ∈ N(i)}

With the number of observations, we design the UCB-type algorithms.

7

4.2 Algorithm

The degree of each node (arm) in the feedback graph Gf is important for the design of the exploration
item. Specifically, the greater the degree of the node, the more likely it is to be observed. At the same
time, more observation of the nodes will lead to more accurate estimates of their average results.
Therefore, there is no need for more exploration on larger nodes. We introduce a new policy that

Algorithm 3 GGRIND
Require: m,J, η, λ, βt, T,Gf

Initialize network parameters to a random θ0, and K̂0 = σ2I
for t = 1 . . . T do

for G ∈ G do
σ̂2
t−1 ← gT

GNN

(
G; θ0

)
K̂−1

t−1gGNN

(
G; θ0

)
/m ∗ 1

deg(G)+1

UG,t ← fGNN

(
G; θ

(J)
t−1

)
+ βtσ̂t−1 (G)

end for
Gt = argmaxG∈GUG,t

Select Gt append the rewards vector yt by the observed rewards.
Set K̂t ← λI+

∑
i≤t gGNN

(
Gi; θ

0
)
gGNN

(
Gi; θ

0
)
/mt

Calculate θ
(J)
t = TrainGNN

(
m,J, η, λ, θ0, (Gi, yi)i≤t

)
end for

makes further use of the underlying reward observations to improve performances. Consider the two
extreme scenarios that can make an arm i played at time t: it has the highest UCB. Either its average
estimate is high, which means it is empirically the best arm to play, or the exploration term is high,
which means we want more information on it. When the exploration term is high, we want to observe
a reward for it to reduce the uncertainty.However, we don’t have to pull this arm directly to get an
observation: we may as well pull any of its neighbors, especially one with higher empirical rewards,
and reduce the bias term all the same.

Algorithm 4 EGGRIND
Require: m,J, η, λ, βt, T,Gf

Initialize network parameters to a random θ0, and K̂0 = σ2I
for t = 1 . . . T do

for G ∈ G do
σ̂2
t−1 ← gT

GNN

(
G; θ0

)
K̂−1

t−1gGNN

(
G; θ0

)
/m

UG,t ← fGNN

(
G; θ

(J)
t−1

)
+ βtσ̂t−1 (G)

end for
Gu

t = argmaxG∈GUG,t

Gt = argmaxG∈neighbor(Gu
t)
fGNN

(
G; θ

(J)
t−1

)
Select Gt append the rewards vector yt by the observed rewards.
Set K̂t ← λI+

∑
i≤t gGNN

(
Gi; θ

0
)
gGNN

(
Gi; θ

0
)
/mt

Calculate θ
(J)
t = TrainGNN

(
m,J, η, λ, θ0, (Gi, yi)i≤t

)
end for

4.3 Result

From figure 1, we know that GGRIND and EGGRIND outperform the phased-elimination and normal
UCB. The reason is that we use the social graph to help our algorithm to gather more information.
Every time we pull an arm, we have more reward information to estimate the reward function. Thus,
GGRIND and EGGRIND have better performance.

8

Figure 1: Compare the regrets among different algorithms

5 Constrained Graph Neural Network Bandits

5.1 Introduction to Constrained GNN Bandits

In practical applications, we will inevitably need to consider the energy consumption of the exper-
iments. That is to say, in each round of interaction between the agent and the environment, we
will receive a cost to represent the energy consumption of our interaction. In order to limit such
an energy consumption can not be too large, we set a budget, indicating a period of time the total
energy consumption limit. In practical applications, we not only need the regret of the algorithm to
ensure convergence, but we also hope that such an energy consumption can be as small as possible,
preferably less than our given budget (that is, zero violation), such a requirement is the design
motivation of our Constrained Graph Neural Network(GNN) .

This design has broad application prospects in predicting molecular properties (energy, chemical
properties) and predicting drug properties. Because in the above applications, in order to obtain
training data by experiments and put these predicted products into production, often require a large
amount of consumption, the introduction of the concept of budget constraints is very meaningful for
reducing experimental consumption.

5.2 Problem Setting

5.2.1 Stochastic Contextual Bandit

We consider a stochastic contextual bandit model with an agent and a set of N arms, the set of arms
is denoted as: N ≜ [N]. In each round t, within the given horizon T , the agent can observe a context
c(t) drawn from the context C with an unknown distribution. The contexts c(t) are independent and
identically distributed (i.i.d.) across rounds.

5.2.2 General Nonlinear Rewards & Costs

After arm selection in round t, the agent will receive reward R(c(t), j) and U(c(t), j) through
interaction with jth arm. Both the reward and the cost depend on the context c(j) and the time t.

9

Specifically,

R(c(t), j) ≜ r(c(t)) + η(t),

U(c(t), j) ≜ u(c(t)) + ξ(t),

where ∀c(t) ∈ C, j ∈ N , the mean reward r(c(t), j) ≜ E[R(c(t), j)], and the mean cost
u(c(t), j) ≜ E[U(c(t), j)]; η(t), ξ(t) are additive noises following zero-mean Gaussian distributions.
It is noteworthy that both the mean reward function r(·, ·) and the mean cost function u(·, ·) are
unknown to the agent and are general nonlinear functions of (context, arm-index) pair.

5.2.3 Problem Formulation

Similar to the bandit problem, we aim to maximize the cumulative rewards over the horizon. During
each round, the reward we obtain is formed by the reward of the arm we selected. In the Constrained
GNN Bandit problem, in addition to maximizing the cumulative reward, we also need to control
the cost of each round as small as possible, ideally smaller than the budget we set. In summary, our
questions are set as follows :

max
a

E[
T∑

t=1

R(c(t), at)]

s.t. E[
τ∑

t′=1

U(c(t′), at′)] ≤ E[
τ∑

t′=1

B(t′)],∀τ,

where the vector a ∈ RT , a = [a1, a2, · · · aT], at represents the action index we select in round t,
t = 1, 2, · · · , T . And budget B(t) ∈ [0, bmax] with E = b,∀t ∈ [T]. For simplicity, we consider
constraints for one type of cost U(·, ·).

5.3 Algorithm Design

In order to solve such a problem, we have made some innovations based on Neural-PD (Shangshang
et al. [2023]), the algorithm apply multi-layer perceptrons to estimate the mean reward and mean cost
of each arms and use primal-dual algorithm to choose the optimal arms. However, this algorithm
cannot be used to solve the Graph Structured problem.

Therefore, we propose a new algorithm GNN-PD which can be applied to solve the Constrained
GNN Bandits problem. Since the Neural-PD algorithm is used to solve the Neural Constrained
Combinatorial Bandits problem, our improvements mainly focus on how to introduce the GNN
network.

In the algorithm we design, we use GNN to estimate the mean reward and mean cost of each arm
and use Primal-Dual algorithm to control the balance between them, which means to achieve reward
maximization while subjecting to anytime cumulative constraints. The obtained algorithm is as
follows in Algorithm 5:

5.4 Theoretical Analysis

To evaluate the performance of GNN-PD Algorithm, we analyse its the regret and constraint violation.
Firstly, we define some concepts to evaluate regret and constraint violation:

Definition of Regret: For any round τ ∈ [T],

R(τ) ≜ R∗ − E[
τ∑

t=1

R(c(t), at)Xj(t)]

Definition of Constraint Violation: For any round τ ∈ [T],

V(τ) ≜ [E(

τ∑
t=1

(U(c(t), at)−B(t))]+

10

Algorithm 5 Graph-Neural-Network-Based Primal-Dual (GNN-PD) Algorithm
Require: T, fGNN,r, fGNN,u,θr,0,θu,0, λ, η, Scaling factors γt;

Q(1)← 0,Σr,0 ← λI,Σu,0 ← λI.
for t = 1, · · · , T do

%% The agent performs all the following steps.
Observation: Obtain Context C(t) and the budget B(t).

Parameter Setup: Set tunable parameter

ϵt ← O(log(1 + T)/
√
t),

Vt ← O(log(1 + T)
√
t)

Gradient Calculation: For each arm j ∈ N ,

gr,j ← gr(c(t), j|θr,t−1);

gu,j ← gu(c(t), j|θu,t−1).

Primal Update: Optimistically estimate r(c(t), j), pessimistically estimate u(c(t), j),∀j ∈
N :

R̂(c(t), j)← fGNN,r(c(t), j|θr,t−1) +
γt−1√
m
||gr,j ||Σ−1

r,t−1
;

Û(c(t), j)← fGNN,u(c(t), j|θu,t−1)−
γt−1√
m
||gu,j ||Σ−1

u,t−1
;

Clip R̂(c(t), j) and Û(c(t), j) to interval [0, 1].

MaxWeight: Select arms at:

at = argmaxa∈NVtR̂(c(t), a)−Q(t)Û(c(t), a),

Feedbacks: Get rewards and costs of selected arms:

R(c(t), at), U(c(t), at).

Dual Update: Update the queue length as follows:

Q(t+ 1)←
[
Q(t) + Û(c(t), at)−B(t) + ϵt

]+
.

Statistics Update:

Σr,t ← Σr,t−1 +
1

m
gr,atg

T
r,at

Σu,t ← Σu,t−1 +
1

m
gu,atg

T
u,at

Obtained θr,t,θu,t by training MLPs fGNN,r, fGNN,u using collecte feedbacks.
end for

According to the theoretical analysis of Neural-PD, we can get the estimation of the performance of
GNN-PD Algorithm:

R(T) = Õ(
√
T)

V(T) = O(1)

The results indicate that the regret bound of the algorithm is sublinear, which means it can converge
to the optimal arm. Also, the algorithm can achieve a zero constraint violation.

In detail, the constraint violation of the algorithm satisfies the equation below:

V(τ) =
{

Õ(log2(1 + T)) τ ≤ Õ(log2T)
0 otherwise

11

That means GNN-PD requires Õ(log2(T)) rounds to reach zero constraint violation because it takes
a necessary online learning procedure to estimate the cost function. That is, if we know the cost
function or it is trivial (e.g. constant), we an eliminate the dependence on T .

5.5 Numerical Results

In order to verify the correctness of the above theoretical analysis, we simulate the performance of the
algorithm through program simulation in this section. Here is the setting of hyperparameters below:

Graph Neural Network In the following, we choose a two-layer MLP with width m = 2048 to
construct a Graph Neural Network (GNN). We use Adam optimizer to optimize GNN and set the
regularization parameter λ = 1, step size η = 10−3.

Synthetic Dataset We consider a contextual graph bandit model: number of arms N = 200,
number of nodes of each graph: n = 5. Dimension of node feature: d = 100. Therefore, the
dimension of graph feature D = 500 and the context c(t) ∈ RN×D = R200×500. The edges in these
graphs are randomly generated.

Reward Model The mean reward of each arm is setting as: r(c(t), j) = |
〈
θr, cTj (t)

〉
|, where

cj(t) is the jth row of c(t) and column vector θr = [1√
D
, 1√

D
, · · ·] ∈ RD = R500.

Constraint Model The mean reward of each arm is setting as: u(c(t), j) = |
〈
θu, cTj (t)

〉
|, where

cj(t) is the jth row of c(t) and column vector θu = [1√
D
, 1√

D
, · · ·] ∈ RD = R500.

Noises The output of reward and cost we set is with a Gaussian noise. And the Gaussian noise is
subject to a 0 mean Gaussian distribution and the variance is σ2 = 10−4.

Budget In our setting, the budget of each round is always a constant, its value is the mean cost of
all the arms in the corresponding round: B(t) =

∑N
j=1 u(c(t), j)/N .

Under the above setting, we obtain the following results through simulation as Figure 2 and Figure 3:

In Fig. 2, we present the regret performances of our algorithm GNN-PD by blue line, while the green
line represents the exploitation strategy. From the diagram, we can conclude that our algorithm can
show the convergence trend of sublinear, which also verifies the proof that the algorithm converges to
Õ(
√
T) in our theoretical analysis. And Fig. 3 shows that our algorithm can achieve the performance

of zero constraint violation in a short round.

The above simulation experiments prove that our algorithm can not only converge to the sublinear
regret bound, but also achieve zero-violation in a short round. These results prove the excellent
performance of our algorithm GNN-PD in Constraint Graph Structured Problem.

6 Conclusion & Future Work

In this report, we generalize the content in the chosen topic and reproduce the code for it. Starting
from the setting of this paper, we expand our work into two parts: GNN bandit with graph feedback
and constraint GNN bandit. For GNN bandit with graph feedback, we have two different UCB-type
algorithms. From the point of view of the exploration, we have different designs in the exploration
term. In future work, we can explore how to better correlate the exploration term with the structure of
the social graph, instead of simply transferring accounts with degrees.

For the Constrained GNN Bandits Algorithm, we can try to make some innovations on the current
method of control: primal-dual to improve its performance, and propose a more detailed theoretical
derivation for the performance of the algorithm. Moreover, we find that if the number of edges of the
graph is too large, it may cause regret to become too large. Therefore, we hope to try to solve this
problem: try to effectively reduce the regret bound when the number of edges of the graph is large.
In addition, we can try to apply our Constrained GNN Bandits Algorithm in some practical scenarios,
such as the evaluation of protein or chemical material properties and medicine performance.

12

Figure 2: GNN-PD Regret

Figure 3: GNN-PD Constraint Violation

7 Contribution
• Xu Bowen: Read and discuss the original paper and related papers. Design the algorithms

of Constrained Graph Neural Network Bandits Algorithm: GNN-PD and its theoretical
analysis. Implement the code simulation of GNN-PD. Participate in the final report writing.

• Zhang Tianyi: Read and discuss the original paper and related papers. Reproduce the
original paper code. Design the algorithms in graph feedback parts. Participate in the final
report writing.

• Zhong Wenfu: Read and discuss the original paper and related papers. Implemented
experiments of algorithms. Design the algorithms in graph feedback parts. Understand and
complete the theoretical derivation of the paper .Participate in the final report writing.

References
N. Alon, N. Cesa-Bianchi, C. Gentile, and Y. Mansour. From bandits to experts: A tale of domination

and independence. Advances in Neural Information Processing Systems, 26, 2013.

S. Bian, S. Wang, Y. Tang, and Z. Shao. Social-aware edge intelligence: A constrained graphical
bandit approach. In GLOBECOM 2022-2022 IEEE Global Communications Conference, pages
6372–6377. IEEE, 2022.

S. Caron, B. Kveton, M. Lelarge, and S. Bhagat. Leveraging side observations in stochastic bandits.
arXiv preprint arXiv:1210.4839, 2012.

S. Chowdhury and A. Gopalan. On kernelized multi-armed bandits, Apr 2017.

13

A. Durand, C. Achilleos, D. Iacovides, K. Strati, G. D. Mitsis, and J. Pineau. Contextual bandits
for adapting treatment in a mouse model of de novo carcinogenesis. In Machine learning for
healthcare conference, pages 67–82. PMLR, 2018.

K. Guo and M. J. Buehler. A semi-supervised approach to architected materials design using graph
neural networks. Extreme Mechanics Letters, 41:101029, Oct 2020. doi: 10.1016/j.eml.2020.
101029. URL http://dx.doi.org/10.1016/j.eml.2020.101029.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. Advances in neural information processing systems, 31, 2018.

D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen, D. Cao, J. Wu, and T. Hou. Could
graph neural networks learn better molecular representation for drug discovery? a comparison study
of descriptor-based and graph-based models. Journal of Cheminformatics, 13(1), Feb 2021. doi:
10.1186/s13321-020-00479-8. URL http://dx.doi.org/10.1186/s13321-020-00479-8.

P. Kassraie, A. Krause, and I. Bogunovic. Graph neural network bandits. arXiv preprint
arXiv:2207.06456, 2022.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news
article recommendation. In Proceedings of the 19th international conference on World wide web,
pages 661–670, 2010.

S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations. Advances in
Neural Information Processing Systems, 24, 2011.

W. Shangshang, B. Simeng, L. Xin, and S. Ziyu. Neural constrained combinatorial bandits. Infocom
2023 IEEE International Conference on Computer Communications, 2023.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. IEEE Transactions on Information Theory, page
3250–3265, Jan 2012. doi: 10.1109/tit.2011.2182033. URL http://dx.doi.org/10.1109/
tit.2011.2182033.

S. S. Villar, J. Bowden, and J. Wason. Multi-armed bandit models for the optimal design of clinical
trials: benefits and challenges. Statistical science: a review journal of the Institute of Mathematical
Statistics, 30(2):199, 2015.

Q. Wu, H. Wang, Q. Gu, and H. Wang. Contextual bandits in a collaborative environment. In
Proceedings of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 529–538, 2016.

Y. Wu, D. Lian, Y. Xu, L. Wu, and E. Chen. Graph convolutional networks with markov random
field reasoning for social spammer detection. Proceedings of the AAAI Conference on Artificial
Intelligence, page 1054–1061, Jun 2020. doi: 10.1609/aaai.v34i01.5455. URL http://dx.doi.
org/10.1609/aaai.v34i01.5455.

D. Zhou, L. Li, and Q. Gu. Neural contextual bandits with ucb-based exploration. In International
Conference on Machine Learning, pages 11492–11502. PMLR, 2020.

14

http://dx.doi.org/10.1016/j.eml.2020.101029
http://dx.doi.org/10.1186/s13321-020-00479-8
http://dx.doi.org/10.1109/tit.2011.2182033
http://dx.doi.org/10.1109/tit.2011.2182033
http://dx.doi.org/10.1609/aaai.v34i01.5455
http://dx.doi.org/10.1609/aaai.v34i01.5455

	Introduction
	Formulation
	GNTK
	GNN Bandits
	Information Gain
	Confidence Sets

	Algorithms
	Comparison
	Convergence Analysis

	Graph bandit with graph feedback
	Graph Feedback
	Algorithm
	Result

	Constrained Graph Neural Network Bandits
	Introduction to Constrained GNN Bandits
	Problem Setting
	Stochastic Contextual Bandit
	General Nonlinear Rewards & Costs
	Problem Formulation

	Algorithm Design
	Theoretical Analysis
	Numerical Results

	Conclusion & Future Work
	Contribution

