2023/5/10 22:52

41E37_2020533049_project

Final Project of SI252 --AlphaGo

Author (One Person Group): f&1&E3X
Student ID: 2020533049

Email: xubw1@shanghaitech.edu.cn

1. Maximal Cuts

(a) MCMC Method

Algorithm 1 MCMC for Wireless Networks:

Initialize: A graph G = (V. E)
Initial Set X, = .

Parameter \.

if v € X; then)

Xi+1 = X; \ {v} with probability of p = R[_\'fz;(.-.x):i}%)(ﬁ.'.- 3
end if
if v € X; then

Xi+1 = X; U {v} with probability of p = H(X'l_zf‘]\’);j;{}[_,\._}.
7: end if
end for

return Maximum Independent Set X,,.

Discrete Markov Chain

Theory Proof:

Firstly, the chain is ergodic with stationary distribution 7r. Because the chain has self-loop, thus it
is aperiodic. Also, each state can return to initial state, and the initial state can transit to any

state, thus the chain is irreducible.

Suppose a state of valid independent set X, after the calculation, we can find that the stationary
distribution of this chain satisfies: 7(X) oc e®(X), where R(X) means the reward of state X.
Therefore, the most frequent state of the chain is the maximum independent set.

Therefore, we can simulate the chain to find the maximum independent set.

import numpy as np

import pandas as pd

import collections

from matplotlib import pyplot as plt

check wheter the state is a valid independent set
def return_reward(state, Edge):
reward = 0

for edge in Edge:
if (stateledge[0]] == 0 and stateledgel[1]] == 1) \

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 1/20

2023/5/10 22:52 #41837_2020533049_project

or (stateledgel[l1]] == 1 and stateledge[l]] == 0):
reward += 1

return reward
def DTMC transition(state, edge):

v = np. random. randint (1, len(state))
next_state = state. copy()

if statelv] == 1:
next statel[v] =
else:
next statel[v] = 1

|
o

reward = return_reward(state, edge)
next reward = return reward(next state, edge)
p = np. exp (next_reward)/ (np. exp (reward) +np. exp (next_reward))

if np. random. binomial (1,p, 1) == 1:
return next_state

else:
return state

def DTMC networks (num_exper, num_ver, edge):

initial state

state = np. zeros (num_ver+1)
max_state = np. zeros (num_ver+1)
Reward = np. array([])
max_reward = 0

neighbour

neigh = []

for i in range(num_ver+1):
neigh. append ([])

for i in range(len(edge)):
store the neighbour of vertex
if edge[il[1] not in neighledgel[i][0]]:
neighledge[i][0]]. append (edge[i] [1])
neighledgelil[1]]. append (edge[i] [0])
for i in range (num_exper) :
transit
state = DTMC_transition(state, edge)
reward = return_reward(state, edge)
Reward = np. append (Reward, reward)

if reward > max_reward:

max_reward = reward
max_state = state. copy()

return max_state, Reward, max_ reward

parameter lambda
lam = 20

number of vertex
num_ver = 20

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 2/20

2023/5/10 22:52 #41837_2020533049_project

number of experiment
num_exper = 1000

edge
edge = [[1,2],1[2,3],1[3,4],[4,5], [5,1],
(1,161, [2, 157, [3,13], [4, 8], [5, 61,
(6,71, 7,81, 8,111, [11, 131, [13, 141, [14, 151, [15,17], [17,16], [16, 18], [18, 6],
[7,9], 10,117, [12, 147, [17, 207, [18, 197,
[9,10], [10, 121, [12, 201, [20, 197, [19, 9]]

max_state, Reward, max_reward = DTMC_networks (num_exper, num_ver, edge)

max_set = np. array ([])
for i in range(num ver+1):
if max_stateli] ==

max_set = np. append (max_set, i)

print ("maximum of reward is = 7, max_reward)
print ("maximum number of vertex in independent set:”)
print (max_set)

plt. plot (Reward)

plt. title("Discrete Time”)
plt. xlabel ("iterations”)
plt. ylabel ("reward”)

maximum of reward is = 15
maximum number of vertex in independent set:
[3. 5. 6. 8 9. 11. 14. 15. 16. 19. 20.]

Text (0, 0.5, 'reward)

Discrete Time

E B

reward
=

T T
] 200 400 BO0 BOO 1000
iterations

Continuous Markov Chain

We choose possion process to simulate the CTMC.

Similar to the DTMC above, the CTMC chain is also ergodic and the transition probability of

/\1/\i>\2’ which is the same as the DTMC. Thus, the CTMC chain also,

converge to a stationary distribution 7(X) o eBX) and the most frequent state is the
maximum independent set. Therefore, we can simulate the chain to find the maximum

embedded chain p =

independent set.

import numpy as np
import pandas as pd

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 3/20

2023/5/10 22:52

41E37_2020533049_project

import collections
from matplotlib import pyplot as plt

check wheter the state is a valid independent set
def return_reward(state, Edge):

reward = 0

for edge in Edge:

if (stateledgel[0]] == 0 and stateledgell]] == 1) \

or (stateledgel[l]] == 1 and stateledge[l]] ==
reward += 1

return reward
def CTMC transition(state, edge):

v = np. random. randint (1, len(state))
next state = state. copy()

if statelv] == 1:
next_statel[v] = 0
else:

|
—

next statel[v] =

reward = return_reward(state, edge)
next _reward = return reward(next state, edge)

p = np. exp (next_reward)/ (np. exp (reward) +np. exp (next_reward))

continuous time: perspective?2

if np. random. exponential (1/p) < np. random. exponential (1/ (1-p)):

return next_state
else:
return state

def CTMC networks (num_exper, num_ver, edge):

initial state

state = np. zeros (num_ver+1)
max_state = np. zeros (num_ver+1)
Reward = np. array([])
max_reward = 0

neighbour

neigh = [J

for i in range (num_ver+1):
neigh. append ([])

for i in range(len(edge)):
store the neighbour of vertex
if edge[i][1] not in neighledgel[i][0]]:
neighledge[i][0]]. append (edgel[i][1])
neighledgel[i][1]]. append(edgel[i][0])
for i in range (num_exper) :
transit
state = CTMC_transition(state, edge)
reward = return_reward(state, edge)

Reward = np. append (Reward, reward)

if reward > max_reward:

file:///C:/study/{SB/RL/project/{R1E3_2020533049_project.html

4/20

2023/5/10 22:52 #41837_2020533049_project

max_reward = reward
max_state = state. copy()

return max_state, Reward, max_ reward

parameter lambda

lam = 20

number of vertex
num_ver = 20

number of experiment
num_exper = 500

edge
edge = [[1,2],[2,3],[3,4], [4,5], [5, 1],
(1,161, [2,15], [3,13], [4, 8], [5, 6],
(6,71, (7,81, [8, 111, [11,13], [13, 141, [14, 151, [15, 171, [17, 16], [16, 18], [18, 6],
[7,9], [10,11], [12, 147, [17, 207, [18, 197,
(9,101, [10, 127, [12, 201, [20, 197, [19, 911

max_state, Reward, max reward = CTMC networks (num_exper, num ver, edge)

max_set = np. array ([])
for i in range (num_ver+1):
if max_stateli] == 1:

max_set = np. append (max_set, i)

print ("maximum of reward is = 7, max_reward)
print ("maximum number of vertex in independent set:”)
print (max_set)

plt. plot (Reward)

plt. title("Discrete Time”)
plt. xlabel ("iterations”)
plt. ylabel ("reward”)

maximum of reward is = 14
maximum number of vertex in independent set:
[2. 5. 6. 8 9. 13. 14. 16. 19. 20.]

|- Text(0, 0.5, ’reward)

Discrete Time

14 4

reward
=

T T
] 100 200 o0 400 500
iterations

(b) Cross-Entropy Method

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 5/20

2023/5/10 22:52 #41837_2020533049_project

Algorithm 2 Cross Entropy Method for Wireless Networks:
Initialize: A graph G = (V. E)
w, o, t, mazits, Ne
while t < mazxits and o > ¢ do
W := SampleGaussian(u, 0%, N)
Reward == WTV
X = sort(W, Reward)
p:=mean(X(1: Ne))
o :=var(X(1: Ne))
T W ~ Normal(u,o?)
t:=t+1
end while
return Maximum Reward Set .

In | |: import math
import numpy as np
from matplotlib import pyplot as plt

PERCENTILE = 70

NUM_VER = 20
SAMPLE_TOTAL = 16
EDGE

EDGE = [I[1,2], [2,3],[3,4], [4,5],[5,1],
[1,16], [2,15], [3, 13], [4, 81, [5, 6],
(6,71, (7,81, 8,117, [11, 131, [13, 14], [14, 1571, [15, 171, [17, 16], [16, 18], [18, 61,
[7,9], [10,11], [12, 147, [17, 207, [18, 197,
[9,1071, [10, 127, [12, 207, [20, 197, [19, 97]

def return reward(weight) :
index = []
reward = 0

for i in range(l, NUM_VER+1):
print ("weight”, weight[i])
if np. random. binomial (1, weight[i], 1) == 1:
index. append (i)

for edge in EDGE:
if (edgel[0] in index and edgel[l] not in index) \
or (edgel0] not in index and edgell] in index):
reward += 1

return reward

def CEM(error):
weight = np. zeros ([SAMPLE TOTAL, NUM VER+1])
mu = np. zeros (NUM_VER+1)
sigma = np. zeros (NUM_VER+1)
mu. £i11(0.5)
sigma. fill(1)
£ mu = [0.5 for i in range (NUM_VER+1)]
sigma = [1 for i in range (NUM_VER+1)]

while True:
old mu = mu

old sigma = sigma

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 6/20

2023/5/10 22:52 #41837_2020533049_project

sample
for i in range (SAMPLE_TOTAL) :
for j in range(l, NUM_VER+1):
weight[i][j] = np. random. normal (mulj], sigmalj])
while weight[il[j] > 1 or weight[i][j] < 0:
weight[i][j] = np. random. normal (mulj], sigmalj])

reward_dict = {}
calculate reward
for i in range (SAMPLE TOTAL) :
reward dict: (i: [reward, weight])
reward dict[i] = [return_reward(weight[i]), weight[i]]

sample fliter = int (SAMPLE TOTAL*PERCENTILE/100)
reward list = reward dict. values()
reward list sorted(reward list, key=lambda x:x[0])

fliter reward: [(reward, weight)]
fliter reward = reward list[:sample fliter]
fliter weight: {i: weight}
fliter weight = {}
for i in range(sample fliter):
fliter weightl[i] = fliter reward[i][l]

for dim in range (1, NUM_VER+1) :
mu[dim] = np. mean(list(fliter weight. values()))
sigmaldim] = math. sqrt(np. var(list (fliter_weight. values())))

error_mu = np. abs (np. sqrt (np. sum(np. square (old_mu-mu))))

error_sigma = np. abs (np. sqrt (np. sum(np. square (old sigma-sigma))))

if error mu < error and error sigma < error:
break

return fliter reward[0][1]

error = 0.001
weight = CEM(error)
opt_index = []
max_reward = 0
num_eposide = 50

for eposide in range(num_eposide) :
reward = 0

index = []
for i in range(l, NUM_VER+1):
if np. random. binomial (1, weight[i], 1) == 1:

index. append (i)

for edge in EDGE:
if (edgel[0] in index and edgel[l] not in index) \
or (edgel[0] not in index and edgel[l] in index):
reward += 1

if reward > max_reward:
max_reward = reward

opt_index = index

print ("maximum of reward is = 7, max_reward)
print ("maximum number of vertex in independent set:”)

print (opt_index)

maximum of reward is = 20
maximum number of vertex in independent set:

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 7/20

2023/5/10 22:52

(1,

(c) MCTS Method

3, 6, 7,

10,

11,

15, 20]

41E37_2020533049_project

The code is in the python file "mcts.py".

The procedure of MCTS:

1. Selection: Starting from the root node R, recursively select the optimal child node (explained

later) until the leaf node L is reached.

2. Expansion: If L is not a termination node (i.e., does not cause the game to terminate) then

create one or more subnodes of the word, choosing one of C.

3. Simulation: The output of running a simulation from C until the end of the game.

4. Backpropagation: Update the current action sequence with the resulting output of the

simulation

To choose the best child node each step, we use the Upper confidence bound:

To ensure both exploration (¢

The code is in the attachment. The result is as below:

Play round: 1

Choose node: Node:

Play round: 2

Choose node: Mode:

play round: 3

Choose node: Node:

Play round: 4
Choose node:
Play round: 5
Choose node:
Play round:
Choose node:
Play round:
Choose node:
Play round:
Choose node:
play round:
Choose node:
play round: 10
Choose node:
Choose node:
Play round: 8

[}

~

4]

o

Choose node: Mode:

Play round: 9

Choose node: Mode:

Play round: 18

Choose node: Node:

Node:
Node:
Node:
Node:
Node:
Node:

Node:
Node:

135078270016,
135678270028,
1356078270052,
1356878270873,
135678270169,
135678270145,
1350878270157,
135678270193,
1356078270205,

1356878270217,
116885648589,

116885648625,
116885648613,

116885648649,

Q/n:
Q/N:
Q/N:
Q/N:
Q/n:
Q/n:
Q/n:
Q/N:
Q/N:

Q/N:
Q/N:

Q/n:
Q/n:
Q/N:

C

11.8/1, state: state: 135678228365, value:

argmaz
o echildren of v

2logN (v)
N

9.9/1, state: State: 135078270010, value:

11.0/1,
11.0/1,
11.0/1,
11.0/1,
11.0/1,
11.0/1,
11.0/1,

11.0/1,
13.0/1,

13.0/1,
13.0/1,

13.9/1,

state:

state:

state:

state:

state:

state:

state:
state:

state:

state:

state:

State:

State:

State:

State:

State:

State:

State:
State:

State:

State:

State:

135078270079,
135078270166,
135078270139,
135078270148,
135078270187,
135078270196,

135078270214,
116885648580,

116885648619,
116885648607,

116885648646,

state: State: 135078270037, value:
value:
value:
value:
value:
value:
value:

value:
value:

value:
value:

value:

) and exploitation (%)

4, round: 1, choices: [1, 2]

5, round: 2, choices: [1, 2, 3]

6,

9,
10,

11,
10,

i Y
i

13,

round:
round:
round:
round:
round:

round:

round:

round:
round:

round:
round:

round:

3,
4,

5

6

&

7,

8

9, choices: [1, 2, 3, 15, 17, 13, 11, 16, 18, 19]

18, choices: [1, 2, 3, 15, 17, 13, 11, 16, 18, 19, 6]
7, choices: [1, 5, 4,

8, choices: [1, 5, 4,
9, choices: [1, 5, 4,

1@, choices: [1, 5, 4, 3, 16, 17, 18, 19, 15, 8, 7]

choices:
choices:
choices:
choices:
choices:

choices:

[1, 2, 3,

[1,
[1,
[1,
[,

1,

15]

15, 17]

15, 17, 13]

15, 17, 13, 11]

15, 17, 13, 11, 16]

15, 17, 13, 11, 16, 18]

3,16, 17, 18, 19]
3, 16, 17, 18, 19, 15]

3, 16, 17, 18, 19, 15, 8]

We can find that there exists some bias between the MCTS result and the optimal solution.

Pros and Cons

(a) MCMC

1. pros: The speed to converge to the optimal is fast.

According to the distribution of each chains, we can find that the most frequent state of
each chain is exactly the set with max reward, and the gap between the optimal and the
suboptimal is large, because the distribution 7(X) o ME(X) s an exponential distribution.
That means most of the time the chain will stay at the set with the max reward, which is

faster to converge to the optimality.

2. cons: Easy to fall into the trap of local optimum.

file:///C:/study/{SB/RL/project/{R1E3_2020533049_project.html

8/20

2023/5/10 22:52 #41837_2020533049_project
If the A is not proper. For example, if A is large, then the chain may fall into the local
optimum. If A is small, the frequency of the maximum independent set may be small, which

will not satisfy our expectation.

(b) Cross-Entropy

1. pros: Low bias. Has the best accuracy among the three algorithms
2. cons: High variance. The value of reward and the selection of the set fluctuate relatively

greatly.
(c) MCTS

1. pros:

(1) Not likely to converge to the locality optimality.

(2) Due to pruning algorithm, a lot of useless exploration can be avoided.
2. cons:

(1) Limited by the depth and width of exploration, it is likely for MCTS to have some bias.

2. Paper Summary

(@) Human-level control through deep reinforcement learning

Core idea: Deep Q-network
Contributions:

1. Derive efficient representations of the environment from high-dimensional sensory inputs,
and use these to generalize past experience to new situations.

2. Learn successful policies directly from high-dimensional sensory inputs using end-to-end
reinforcement learning

3. This work bridges the divide between high-dimensional sensory inputs and actions,
resulting in the first artificial agent that is capable of learning to excel at a diverse array of
challenging tasks

Surprising;:

1. High-dimension: combining the traditional linear reinforcement with the neural network,
DQN makes the reinforcement able to solve the high-action-dimensional problem.

2. Best performing and Stable: DQN agent performed at a level that was comparable to that of
a professional human games tester across the set of 49 games, achieving more than 75% of
the human score on more than half of the games

3. Minimal prior knowledge: DQN can successfully learn control policies in a range of different
environments with only very minimal prior knowledge, receiving only the pixels and the
game score as inputs, and using the same algorithm, network architecture and
hyperparameters on each game, privy only to the inputs a human player.

4. Experience replay: DQN stores the agent's experiences at each time-step,

e = (st, ag, Tt, st+1), in a data set Dy = ey, ..., e, pooled over many episodes (where the

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 9/20

2023/5/10 22:52 #41837_2020533049_project
end of an episode occurs when a terminal state is reached) into a replay memory.

5. Frame-skipping technique: In DQN, the agent sees and selects actions on every k;, frame
instead of every frame, and its last action is repeated on skipped frames. The main
advantage of this type of architecture is the ability to compute Q-values for all possible
actions in a given state with only a single forward pass through the network.

6. Separate network: Use a separate network for generating the targets y; in the Q-learning
update. This modification makes the algorithm more stable compared to standard online Q-
learning, where an update that increases Q(st, at) often also increases Q(s¢.+1, a)for all a
and hence also increases the target y;, possibly leading to oscillations or divergence of the
policy.

7. Clipping the squared error to be between -1 and 1 to improve the stability.

Difficult:

1. In this paper, DQN uses a function approximator to estimate the action-value function,
Q(s,a;0) = Q(s,a), where the approximator is not the traditional linear function
approximator, but a neural network.

2. However, DQN cannot be used for continuous control problems, because in the loss
function between the optimal target values r + ymaz Q* (s, a’) and the approximate
!
a

target values r + 'quw Q(Sl, a; 91_) is
a

Lz(oz) = Es,a,r,s/(y - Q(sa a; 01))2 + Es,a,r(Vs/(y))

Differentiating the loss function with respect to the weights we arrive at the following
gradient to update the approximating parameters:

A(?Z'L(ei) = Es,a,r,s’((r + ')'ma;x Q(Sla a'; 01_) - Q(s,q; HiAthetaiQ(S7 a;6;))))
a

In the gradient the max Q(s', a’) function can only handle discrete situation. When in
!/
a

continuous situation, DQN may not converge, which is a drawback of DQN.
Whether convincing;:

In fact, for games with high-dimensional action spaces, DQN has incomparable advantages over
other traditional algorithms, which has been recognized. Therefore, from the test result, it is

convincing.
Applied in other paper:

1.The DDPG algorithm inherits the DQN algorithm's idea of combining reinforcement learning
with neural networks, using neural networks to estimate action-value functions to solve high-
dimensional action space problems. But DDPG introduces the idea of Actor-Critic algorithm to
solve the problem. 2.The Actor-Critic algorithm uses the idea of separating the network in the
DQN algorithm, which means Actor-Critic algorithm separates the policy network(Actor) and

value network (Critic) to enhance the stability of algorithm.

(b) Mastering the game of Go with deep neural networks and tree search

Core idea: AlphaGo

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 10/20

2023/5/10 22:52

41E37_2020533049_project
Contributions: the first time that a computer program has defeated a human professional
player in the full-sized game of Go.

Combine Monte Carlo simulation(Monte Carlo Tree search) with value and policy networks

Procedure of AlphaGo:

1. Choose First, traverse down from the root of the tree, choosing the move with the highest
confidence each time until the leaf node. The confidence is composed of the Q-value stored
in each node and the prior probability P given by the policy network.

2. Extend and evaluate After reaching the leaf node, the tree needs to be expanded, the
current situation is evaluated by the strategy network and the value network, and the node
with the highest probability is added to the search tree.

3. Backtracking Backtrack the value v of the newly added node to the Q-value of each node on
the path

Aim:
Minimize the loss function | that sums over mean-squared error and cross-entropy losses:
2 T 2
(p,v) = fo(s),l = (z—v)" —n" logp + c[|0]|
Surprising:

1. Monte Carlo Tree Search: using Monte Carlo rollouts to estimate the value of each state in a
search tree

2. Combines policy and value network in MCTS:
At each time step t of each simulation, an action at is selected from state s;:

ay = argmaw(Q(St’ a) + U(St, a))

So as to maximize action value plus a bonus

P(s,a)

u(s,a) ToNGa N(s.a)

Policy network is used to reduce the search width and only consider the method recommended
by the network,

value network is used to reduce the depth of the search tree, you can replace the search subtree
with a value to indicate the probability of winning the position

1. Evaluate the leaf node in two different ways: first, by the value network vg(sy,); and second,
by the outcome 21, of a random rollout played out until terminal step T using the fast
rollout policy p,; these evaluations are combined, using a mixing parameter A, into a leaf

evaluation V(sz):

After test, we find that mixed evaluation (A = 0.5) performed best The two position-evaluation
mechanisms are complementary: the value network approximates the outcome of games played

file:///C:/study/{SB/RL/project/{R1E3_2020533049_project.html

11/20

2023/5/10 22:52 #41837_2020533049_project

by the strong but impractically slow p,, while the rollouts can precisely score and evaluate the
outcome of games played by the weaker but faster rollout policy p..

1. Combine the SL policy network and the MCTS: begin by training a supervised learning (SL)
policy network p, directly from expert human moves. This provides fast, efficient learning
updates with immediate feedback and high-quality gradients. Next, we train a
reinforcement learning (RL) policy network p, that improves the SL policy network by
optimizing the final outcome of games of self-play.

Difficult:

1. Larger networks achieve better accuracy but are slower to evaluate during search.
2. Evaluating policy and value networks requires several orders of magnitude more
computation than traditional search heuristics.

Sol:

AlphaGo uses an asynchronous multi-threaded search that executes simulations on CPUs, and
computes policy and value networks in parallel on GPUs.

Confusing:

1. Why mixed evaluation (A = 0.5) performed best, is there any theoretical proof?
2. Why alphago collapsed when played against Li Sedol?

Whether convincing:
It is certain that alphago with its MCTS theory is a huge feat, and its theory is successful.

However, when alphago played against Li Sedol, there was a situation where the alphago
collapsed, indicating that alphago still has certain problems, and it is not as perfect as the paper
says.

Applied in other paper:

1.Derived from AlphaGo, AlphaGo Zero still utilizes the MCTS. However, AlphaGo Zero
abandoned the supervised learning part, which means it can master the go without human's
knowledge.

(c) Mastering the game of Go without human knowledge

Core idea: AlphaGo Zero

Contributions:

Search-based Policy Iteration, Combine policy network and value network, residual network
Surprising;

1. AlphaGo Zero is based solely on reinforcement learning, without human data, guidance or
domain knowledge beyond game

2. It uses only the black and white stones from the board as input features

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 12/20

2023/5/10 22:52 #41837_2020533049_project

3. It uses a single neural network, this neural network combines the roles of both policy
network and value network into a single architecture rather than separate them in AlphaGo .

4.1t uses a simpler tree search that relies upon this single neural network to evaluate positions
and sample moves, without performing any Monte Carlo rollouts.

5. Residual network architecture rather than convolutional network architecture in AlphaGo
Search-based Policy Iteration:
1. Search-based Policy Improvement:
(1) Run MCTS search using current network (to get the result of one game)
(2) Actions selected by MCTS > actions selected by raw network
2. Search-based Policy Evaluation
(1) Play self-play games with AlphaGo search
(2) Evaluate improved policy by the average outcome (to train neural network)
Aim:
Minimize the loss function | that sums over mean-squared error and cross-entropy losses:
(p,v) = fo(s),1 = (z—v)* — 7" logp + c||6]|*
Difficult:

Computation power: AlphaGo Zero used a single machine with 4 tensor processing units
(TPUs)29, whereas AlphaGo Lee was distributed over many machines and used 48 TPUs

Whether convincing;:

The new MCTS utilized a network combined with policy and value network, which makes the
self-play much more efficient, which improves the performance of AlphaGo Zero. What's more,
the residual network architecture makes iteration take full advantage of prior results. All above
makes the AlphaGo Zero performs better. And the competition with Kejie proved its
effectiveness.

Applied in other paper:

1. AlphaZero inherits the self-learning ability of alphago zero and combination of deep neural
network and MCTS.

(d) A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play

Core idea: AlphaZero
Contributions:

1. Accommodates, without special casing, a broader class of game rules;
2. Uses a general-purpose Monte Carlo tree search (MCTS) algorithm instead of Alpha-beta
search.

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 13/20

2023/5/10 22:52 #41837_2020533049_project

Surprising;

1. Accommodates a broader class of game rules: In AlphaZero, we reuse the same hyper -
parameters, algorithm settings, and network architecture for all games without game-
specific tuning. The only exceptions are the exploration noise and the learning rate schedule

2. Doubts about Alpha-beta search: Before the advent of alphazero, the alphabeta algorithm
was considered a very good pruning algorithm. But alphazero uses the MCTS algorithm to
replace the alpha-beta algorithm and achieves better results

3. Fewer search than other programme: AlphaZero may compensate for the lower number of
evaluations by using its deep neural network to focus much more selectively on the most
promising variations.

4. Bayesian Optimization: In AlphaZero, we reuse the same hyperparameters, algorithm
settings, and network architecture for all games without game-specific tuning. The only

exceptions are the exploration noise and the learning rate schedule
Similarity with AlphaGo zero:

Their core algorithm is similar (deep neural network and MCTS): AlphaZero uses a deep neural
network (p, v) = fy4(s) with parameters g. This neural network f4(s) takes the board position s
as an input and outputs a vector of move probabilities p with components p, = Pr(als) for
each action a and a scalar value v estimating the expected outcome z of the game from position
s, v &= E(z|s). AlphaZero learns these move probabilities and value estimates entirely from self-
play; these are then used to guide its search in future games.

Differences: AlphaZero uses a general purpose Monte Carlo tree search (MCTS) algorithm

Difficult:

1. Computation Power: During training only, 5000 first generation tensor processing units
(TPUs) were used to generate self-play games, and 16 second-generation TPUs were used
to train the neural networks.

Confusion:

1. Why we need to maximize the similarity of the policy vector pt to the search probabilities pt
2. Why AlphaZero performs much better than AlphaGo Zero, assuming their core algorithm is
similar (deep neural network and MCTS)

Whether convincing;:

In experiment and competition with other programmes such as AlphaGo Zero, Crazy Stone,
AlphaZero exhibits extremely high robustness and excellent performance. Therefore, its

algorithm implementation is credible.
Applied in other paper:

1. In fact, AlphaZero draws on the “expert iteration” algorithm, where MCTS is expert and

neural network is apprentice.

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 14/20

2023/5/10 22:52 #41837_2020533049_project

Algorithm 1 Expert Iteration
I: 7ty = initial_policy()

;= build_expert(7p)

fori=1;1< max_iterations; i++ do
S; = sample_self_play(7;_,)
D; = {(s, imitation_learning_target(w}_,(s)))|s € S;}
i = train_policy(D);)
m; = build_expert(7;)

end for

AR e ot i

3. Gomoku

(a) Gomoku with forbidden rules

The code of AlphaZero with forbidden rule is in the folder
"AlphaZero_Gomoku_with_forbidden_rule". The relative instruction is in the "README.md" file
in the folder.

The main change is to add the forbidden rules (mainly in python file "gomoku.py")
Possible improvement:

In the step of MCTS backtracking, we can use Actor-Critic Algorithm to optimize the estimation

of prior probability P(s,a).

(b) AlphaZero without neural network

The code of AlphaZero without neural network is in the python file "mcts_pure.py" in the folder
"AlphaZero_Gomoku_with_forbidden_rule". The relative instruction is in the "README.md" file in
the folder.

In MCTS without neural network: we estimate the winning rate (also represents the value of
(s,a)) Q(s,a) by simulation to the end of game and based on the winning rate, we choose the
next action. However, the method of simulation is to choose the next action randomly until the

end of one game. This randomness introduces a large bias to the value of each action.

While in MCTS with neural network, we simulate the final result based on both the value and its
upper confidence bound. And in the process of simulation, we will use the prior probability of

(s,a): P(s,a), which is generated by neural network, to estimate the upper confidence bound:

N(s,b)
U(S, (1) = CmctP(S, CL)]_-|-N—(sa)

Based on the value with upper confidence bound, we choose the optimal approximate action a:
a = argmaz(Q(s,a) + U(s,a)), where Q(s, a) is the value of (s, a) (or winning rate).
a

In these process, the Neural network is used to estimate the prior probability P(s,a), and
further estimate the choice of action.

After the end of simulation of one game and get the final result of one game, we can backtrack
the neural network to update the probability P(s, a) to be more accurate.

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 15/20

2023/5/10 22:52

41E37_2020533049_project
Through the iteration of neural network, we can estimate a relatively accurate win probability for

each move.

While in the MCTS without neural network, we can only estimate the prior probability P(s, a)
with a random value or completely finish the game. The former alternative has a large error, and
the latter alternative has much more time cost. In order to reduce the time cost, we choose to
take a random value for the prior probability, as shown in the following figure (the function

“rollout_policy_fn" in "mcts_pure.py"):

def rollout policy fn(board) :

nnn

a coarse, fast version of policy fn used in the rollout phase.

nunwnr

rollout randomly

action_probs = np. random. rand (len(board. availables))

return zip(board. availables, action_probs)
In this case, the accuracy of prior probability P(s, a) with neural network is certainly better than
those without neural network. Therefore, in each simulation, AlphaZero with neural network can
always choose the better action with more value and performs better. We can also verify that
through simulation. We let the AlphaZero with the neural network play against the one without

the neural network :

file:///C:/study/{SB/RL/project/{R1E3_2020533049_project.html

16/20

2023/5/10 22:52

1&1832_2020533049_project
Start game @
The winner is player 1
Start game 1
The winner is player 1
Start game 2
The winner is player 1
Start game 3
The winner is player 1
Start game 4
The winner is player 1
Start game S
The winner is player 1
Start game &
The winner is player 1
Start game 7
The winner is player 1
Start game 2
The winner is player 1
Start game 2
The winner is player 1
Start game 18
The winner is player 1
Start game 11
The winner is player 1
Start game 12
The winner is player 1
Start game 13
The winner is player 1
Start game 14
The winner is player 1
Start game 15
The winner is player 1
Start game 16
The winner is player 1
Start game 17
The winner is player 1
Start game 13
The winner is player 1
Start game 19
The winner is player 1
Start game 28
The winner is player 1

Through the result, we can find that in 60 games, the AlphaZero with the neural network won 60
games, while the AlphaZero without the neural network only won 0 games. The result proves
that the AlphaZero with neural network performs much better than the one without neural
network.

(c) Experience share
1. A core idea of RL reflected in MCTS is "exploration and exploitation trade-off".
In MCTS, we choose the next action based on the value with upper confidence bound:
\begin{align*}

a = \mathop{argmax}\limits_{a}(Q(s,a)+U(s,a))
\end{align*}

file:///C:/study/{SB/RL/project/{R1E3_2020533049_project.html

17/20

2023/5/10 22:52 #41837_2020533049_project

And the upper confidence bound of (s, a) is:
\begin{align*}

U(s,a) = c_{puct}P(s,a)\frac{\sqrt{N(s,b)}}{1+N(s,a)}
\end{align*}

The bound reflects the "exploration and exploitation trade-off": the winning rate Q(s, a)
represents the value of action a, while the upper confidence bound U (s, a) represents the
degree of our exploration of action a. For example, for the action a which we have not
explore yet, the N(s,a) = 0 and the upper confidence bound will be large, which promote
the exploration of action a.

2. In the process, the understanding of MCTS has been further deepened:

The procedure of MCTS:

(1) Selection: Starting from the root node R, recursively select the optimal child node

(explained later) until the leaf node L is reached.

(2) Expansion: If L is not a termination node (i.e., does not cause the game to terminate)
then create one or more subnodes of the word, choosing one of C.

(3) Simulation: The output of running a simulation from C until the end of the game.

(4) Backpropagation: Update the current action sequence with the resulting output of the

simulation

In AlphaZero, the neural network has been added to estimate the value of each action,
which improve the performance of MCTS.

3. One of the main idea of MCTS reflected in AlphaZero is pruning, which means after much
exploration, the value with upper confidence bound of bad move will be small, to decrease
the probability of choosing them to a small value. In this case, under a certain degree of
exploration, the agent can avoid much unnecessary exploration and focus on the move with
high value, which construct the process of pruning.

(d) Innovative part

1. User-interface

A user-interface will be shown after running python file "game.py" in folder
“AlphaZero_Gomoku_with_forbidden_rule". The user can choose to play against either an Al
or another human player.

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 18/20

2023/5/10 22:52 #41837_2020533049_project
| AlphaZero Gomoku ... — X

AlphaZercA T

Q
: 9 ‘

2. MuZero In a paper published by deepmind: "Mastering Atari, Go, chess and shogi by
planning with a learned model, the algorithm of MuZero is introduced in detail, and it is
confirmed that muzero has a better performance than alphazero in learning Go.

Different from AlphaZero with knowledge of rules of game, MuZero has no knowledge with

these rules. Therefore, MuZero takes a different approach, using a "representation network
h to convert the observed chessboard state O into its own hidden state .S.

With the hidden state Sy, MuZero can calculate the various actions that can be made in the
So state (after learning, the possible actions obtained by MuZero will become more and
more in line with the rules), and can pass the "dynamic network" (dynamic network) g,
Using MuZero's chosen action and the current latent state SO, deduce S1. At each real-
world time point, MuZero can use its internal model and MCTS to select the best behavior
at that time point and apply it to the real world. After actually making an optimal behavior,
this behavior can be "recycled" and used to train the dynamic network g (thus improving
MuZero's internal model).

Another optimization used in MuZero is "Reanalyse":

Re-running MCTS, keeping the trajectory (observations, actions, and rewards) unchanged,

generates new search statistics that provide new goals for policy and value prediction.

Because during direct interaction with the environment, searching with an improved
network yields better statistics. Similarly, re-searching with the improved network on
existing trajectories also yields better statistics, allowing repeated improvements using the
same trajectory data.

Therefore, without knowing the rules of the game, MuZero can simulate the rules through

the hidden state, and through Monte Carlo tree search, make accurate choices in the real

environment. The comparison of performance between MuZero and AlphaZero is as below:
file:///C:/studyMSBVRL/project/{&{&3Z_2020533049_project.html 19/20

2023/5/10 22:52 #41837_2020533049_project

Shogi Go
W[|0 | B2

B[R

i fits
HIER| 2| E[2 RHEE
5000 ————— 5000
4000 4000
3000 B 3000
o @
w 5
2000 & 2000
1000 1000

olE
00 02 04 06 08 1.0
Millions of Training Steps

0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Millions of Training Steps Millions of Training Steps Millions of Training Steps

We can find that after a certain amount of training, the performance of MuZero (Blue line)

will exceed the AlphaZero (Orange line), which means the MuZero without the knowledge
of game rules has better performance than AlphaZero.

file:///C:/study 5B /RL/project/{RtE3Z_2020533049_project.html 20/20

